

SpeedChip XRS7000 and XRS3000 Series

User Manual

The XRS7004, XRS7003 and XRS3003 are HSR and PRP (IEC 62439-3 Clause 5 & 4) enabled singlechip gigabit Ethernet switches. XRS7003 and XRS3003 can be employed in HSR and PRP Endnodes and XRS7004 in both End-Nodes and HSR and PRP RedBoxes. A QuadBox can be built using two XRS7004 devices.

Features

- 144-pin Plastic Enhanced Quad Flat Pack (EQFP) (22mm x 22mm, 0.5 mm pitch) or 256-pin Fine Ball Grid Array (FBGA) Package (17mm x 17mm, 1.0 mm ball pitch)
- Industrial Temperature Range -40°C to +100°C
- Two (XRS7003, XRS3003) or three (XRS7004) 10/100/1000 Mbit/s Full-Duplex Ethernet interfaces (RGMII)
- 10/100 Mbit CPU port (RMII)
- Gigabit wire speed forwarding capacity, nonblocking
- I2C and MDIO interfaces for register access (only MDIO in XRS3003)
- Cut-through and Store-and-Forward operation
- Quality of Services (QoS) with four priority queues per port
- Per port packet filtering
- VLAN tagging (not in XRS3003)
- Priority tagging (not in XRS3003)
- IEEE 1588 Precision Time Protocol (PTP) support with internal Real-Time Clock (RTC)

- HW counters for implementing Remote Network MONitoring (RMON) SNMP MIB (not in XRS3003)
- Support for MAC address based authentication methods
- Support for Spanning Tree Protocol (STP) and Rapid Spanning Tree Protocol (RSTP) implementations
- PPS (Pulse per Second) input and output (only output in XRS3003)

High-availability Seamless Redundancy and Parallel Redundancy Protocol

HSR and PRP protocols are used in applications that require short reaction time and high availability. Typical applications include smart grid electrical substation automation and other critical networking applications such as industrial automation, motion control, vehicle and military communication. HSR and PRP provide a network that has no single point of failure and zero recovery time in case of a failure: Single network faults will not result in any frame loss. The network is fully operational even during maintenance as any network device can be disconnected and replaced without breaking the network connectivity.

XRS7000 and XRS3000 User Manual, Version 1.3

/ **Five Years** Out

Table 1. Device Features

Feature	XRS7004E	XRS7004F	XRS7003E	XRS7003F	XRS3003F
10/100/1000 Mbit/s RGMII ports	3	3	2	2	2
10/100 Mbit/s RMII ports	1	1	1	1	1
High-Availability Seamless Redundancy (HSR)	Yes	Yes	Yes	Yes	Yes
Parallel Redundancy Protocol (PRP)	Yes	Yes	Yes	Yes	Yes
Precision Time Protocol (PTP)	Yes	Yes	Yes	Yes	Yes
Register Access	MDIO, I ² C	MDIO only			
Queues per port	4	4	4	4	4
Maximum number of VLANs	4096	4096	4096	4096	No VLAN support
Recommended HSR network size	Up to 512 hops	Up to 512 hops	Up to 512 hops	Up to 512 hops	Up to 512 hops
HSR proxy node table size	512 MAC Addresses	512 MAC Addresses	64 MAC Addresses	64 MAC Addresses	1 MAC Address
Package	EQFP144	FBGA256	EQFP144	FBGA256	FBGA256
Operating Junction Temperature range	-40°C to +100°C	-40°C to +100°C	-40°C to +100°C	-40°C to +100°C	-40°C to +100°C

XRS7000 and XRS3000 User Manual, Version 1.3

Contents

1.	CONVENTIONS USED IN THIS DOCUMENT				
2.	TYP	PICAL APPLICATIONS	9		
3.	PIN	DESCRIPTION	11		
	3.1	EQFP144 Package			
	3.2	FBGA256 Package			
4.	FUN	NCTIONAL OVERVIEW			
5.	REG	GISTER INTERFACE			
	5.1	Device Identification Registers			
	5.2	MDIO Slave			
	5.3	I2C Slave			
	5.4	MDIO and I2C Slave Address Configuration			
6.	RED	DUNDANT SWITCH (RS)			
	6.1	Inbound Processing			
		6.1.1 RX MII			
		6.1.2 Timestamp			
		6.1.3 RX Pre-process 6.1.4 Forwarding Decision			
		6.1.4 Forwarding Decision6.1.5 Inbound Policy			
		6.1.6 Priority-setting			
		6.1.7 Precision Time Protocol			
		6.1.8 Management Trailer			
		6.1.9 MAC Address Table			
		6.1.10 Virtual LANs (VLANs)	54		
		6.1.11 Forward Portmask	55		
	6.2	Outbound Processing			
		6.2.1 TX Post-process			
		6.2.2 TX MII			
		6.2.3 Timestamp			
		6.2.4 PTP Overwrite			
	6.3	Forwarding Core			
		6.3.1 Memory Controller			
		6.3.2 Priority Queues			
		6.3.3 Frame Early Drop			
	6.4	HSR (High-availability Seamless Redundancy)			
		6.4.1 Forwarding of HSR Frames			
		6.4.2 HSR Port Modes	61		
	6.5	PRP (Parallel Redundancy Protocol)			
		6.5.1 Forwarding of PRP Frames			
	6.6	HSR/PRP interoperability			
	6.7	Allowed Port Modes			
	6.8	Software Reset			
	6.9	Switch Configuration Registers			
		6.9.1 General Switch Configuration Registers			
		6.9.2 Frame Timestamp Registers			
		6.9.3 Virtual LAN Configuration Registers			

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

6.10.1 General Configuration and State Registers.		6.10 Port Configuration Registers	
6.10.3 PTP Registers		6.10.1 General Configuration and State Registers	
6.10.4 Counter Registers 90 6.10.5 Inbound Policy Registers 103 7. REAL-TIME CLOCK (RTC) 107 7.1 Registers 107 8. TIME STAMPER (TS) 112 8.1 Registers 112 9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 116 9.1 Registers 116 10.2 Recommended Operating Conditions 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 IQC Timing 126 10.5.6 MDIO Timing 126		6.10.2 HSR/PRP Registers	
6.10.5 Inbound Policy Registers 103 7. REAL-TIME CLOCK (RTC) 107 7.1 Registers 107 8. TIME STAMPER (TS) 112 8.1 Registers 112 9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 116 9.1 Registers 116 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 120 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.6 MDIO Timing 129 11.1 ECPF144 Package 130 11.1 ECPF144 Package 130 11.1 ECPF144 Package 130 11.1 ECPF144 Package 130 11.1.1 ECPF144 Package 130 <td></td> <td>6.10.3 PTP Registers</td> <td></td>		6.10.3 PTP Registers	
7. REAL-TIME CLOCK (RTC) 107 7.1 Registers 107 8. TIME STAMPER (TS) 112 8.1 Registers 112 9. GENERAL-PURPOSE IO (GPIO) 116 9. I. Registers 116 9. I. Registers 116 10. ELECTRICAL SPECIFICATION 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.5.2 Reset Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 INDUCTION 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EOFP144 Package 130 11.1 EOFP144 Package 130 11.1 EOFP144 Package 132 12. ORDERING INFORMATION 134		6.10.4 Counter Registers	
7.1 Registers 107 8. TIME STAMPER (TS) 112 8. 1 Registers 112 9. GENERAL-PURPOSE IO (GPIO) 116 112 9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 116 10. ELECTRICAL SPECIFICATION 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 IC Timing 126 10.5.6 MDIO Timing 129 11. MCCHANICAL SPECIFICATION 130 11.1 EOFP144 Package 130 11.1 EOFP144 Package 130 </th <th></th> <th>6.10.5 Inbound Policy Registers</th> <th></th>		6.10.5 Inbound Policy Registers	
8. TIME STAMPER (TS) 112 8.1 Registers 112 9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 126 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11.1 EQFP144 Package 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERIN	7.	. REAL-TIME CLOCK (RTC)	
8.1 Registers. 112 9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 116 9.1 Registers 116 10. ELECTRICAL SPECIFICATION 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.3 RGMII Timing 124 10.5.4 RMII Timing 126 10.5.5 I2C Timing 126 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.1 EQFP144 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		7.1 Registers	
9. GENERAL-PURPOSE IO (GPIO) 116 9.1 Registers 116 9.1 Registers 116 10. ELECTRICAL SPECIFICATION 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.4 RMII Timing 126 10.5.5 I/2C Timing 128 10.5.6 MDIO Timing 128 10.5.6 MDIO Timing 129 11.1 EOFP144 Package 130 11.1 EOFP144 Package 130 11.1 EOFP144 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134	8.	. TIME STAMPER (TS)	
9.1 Registers. 116 10. ELECTRICAL SPECIFICATION		8.1 Registers	112
10. ELECTRICAL SPECIFICATION 120 10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EOFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134	9.	. GENERAL-PURPOSE IO (GPIO)	
10.1 Absolute Maximum Ratings 120 10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.3 RGMII Timing 124 10.5.4 RMII Timing 125 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12.0 ORDERING INFORMATION 134		9.1 Registers	116
10.2 Recommended Operating Conditions 120 10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134	10	0. ELECTRICAL SPECIFICATION	
10.3 Package Thermal Information 121 10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11.1 EOFP144 Package 130 11.2 FBGA256 Package 132 12.0 ROBERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.1 Absolute Maximum Ratings	
10.4 DC Electrical Characteristics 122 10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12.0 RDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.2 Recommended Operating Conditions	
10.4.1 Current consumption 122 10.4.2 I/O Characteristics 123 10.5 Interface Timing 123 10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 123 10.5.3 RGMII Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12.0 RDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.3 Package Thermal Information	121
10.4.2 I/O Characteristics 123 10.5 Interface Timing. 123 10.5.1 Input Clock Timing. 123 10.5.2 Reset Timing. 124 10.5.3 RGMII Timing. 125 10.5.4 RMII Timing. 126 10.5.5 I2C Timing. 128 10.5.6 MDIO Timing. 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package. 130 11.2 FBGA256 Package. 132 12. ORDERING INFORMATION. 134 12.1 Part Ordering Numbers. 134		10.4 DC Electrical Characteristics	
10.5 Interface Timing. 123 10.5.1 Input Clock Timing. 123 10.5.2 Reset Timing. 124 10.5.3 RGMII Timing. 125 10.5.4 RMII Timing. 126 10.5.5 I2C Timing. 128 10.5.6 MDIO Timing. 129 11. MECHANICAL SPECIFICATION. 130 11.1 EOFP144 Package. 130 11.2 FBGA256 Package. 132 12. ORDERING INFORMATION. 134 12.1 Part Ordering Numbers. 134		10.4.1 Current consumption	
10.5.1 Input Clock Timing 123 10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.4.2 I/O Characteristics	
10.5.2 Reset Timing 124 10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5 Interface Timing	
10.5.3 RGMII Timing 125 10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.1 Input Clock Timing	
10.5.4 RMII Timing 126 10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.2 Reset Timing	
10.5.5 I2C Timing 128 10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.3 RGMII Timing	
10.5.6 MDIO Timing 129 11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.4 RMII Timing	
11. MECHANICAL SPECIFICATION 130 11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.5 I2C Timing	
11.1 EQFP144 Package 130 11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134		10.5.6 MDIO Timing	
11.2 FBGA256 Package 132 12. ORDERING INFORMATION 134 12.1 Part Ordering Numbers 134	11.	1. MECHANICAL SPECIFICATION	
12. ORDERING INFORMATION		11.1 EQFP144 Package	
12.1 Part Ordering Numbers		11.2 FBGA256 Package	
5	12	2. ORDERING INFORMATION	
12.2 Sales Offices		12.1 Part Ordering Numbers	134
		12.2 Sales Offices	134

Figures

Figure 1. End-Node Application	9
Figure 2. RedBox Application	
Figure 3. Multiport RedBox Application	
Figure 4. QuadBox Application	
Figure 5. XRS7004E Device Pinout (Top View)	
Figure 6. XRS7004F Device Pinout (Top View)	
Figure 7. Top Level Block Diagram	
Figure 8. Read Access using MDIO	
Figure 9. Write Access using MDIO	
Figure 10. Write Access using I2C	
Figure 11. Read Access using I2C	

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

Figure 12. I2C Write	
Figure 13. I2C ReadAddress	
Figure 14. I2C ReadData	
Figure 15. RS Block Diagram	
Figure 16. Forwarding Path	
Figure 17. RS Inbound and Outbound Processing Blocks	40
Figure 18. Ethernet Frame Timestamp Point	41
Figure 19. Forwarding Decision	43
Figure 20. Inbound Policy	45
Figure 21. Ethernet Frame with Time Trailer	47
Figure 22. Ethernet Frame with Management Trailer	
Figure 23. Management Trailer with 3-port RS and 8-bit offset	
Figure 24. MAC Address Entry	
Figure 25. Address Learning	51
Figure 26. Address Aging	
Figure 27. MAC Address Search & Forwarding Decision	54
Figure 28. Priority Queues (three ports shown)	
Figure 29. Frame Early Drop Algorithm	58
Figure 30. Frame from normal port (or non-PRP frame from PRP port)	59
Figure 31. HSR Redundant Port Forwarding Logic	
Figure 32. PRP Redundant Port Forwarding Logic	63
Figure 33. RTC Interfaces	107
Figure 34. TS Interfaces	112
Figure 35. Reset Timing	124
Figure 36. RGMII Timing	
Figure 37. RMII Clocking Option 1	
Figure 38. RMII Clocking Option 2	126
Figure 39. RMII Timing	127
Figure 40. I2C Timing	128
Figure 41. MDIO Timing	
Figure 42. EQFP144 Package Dimensions	131
Figure 43. FBGA256 Package Dimensions	133

Tables

Table 1. Device Features	
Table 2. Pin Types	12
Table 3. EQFP144 Package RGMII Pin Definitions	12
Table 4. EQFP144 Package RMII Pin Definitions	14
Table 5. EQFP144 Package Register Access and Interrupt Pin Definitions	14
Table 6. EQFP144 Package Time Synchronization Pin Definitions	15
Table 7. EQFP144 Package Clock and Reset Pin Definitions	15
Table 8. EQFP144 Package Power and Ground Pin Definitions	
Table 9. EQFP144 Package Other Pin Definitions	17
Table 10. Pin Types	20
Table 11. FBGA256 Package RGMII Pin Definitions Table 12. FBGA256 Package RMII Pin Definitions	20
Table 12. FBGA256 Package RMII Pin Definitions	21
Table 13. FBGA256 Package Register Access and Interrupt Pin Definitions	22
Table 14. FBGA256 Package Time Synchronization Pin Definitions	22
Table 15. FBGA256 Package Clock and Reset Pin Definitions	22

XRS7000 and XRS3000 User Manual, Version 1.3

Table 16. FBGA256 Package Power and Ground Pin Definitions	
Table 17. FBGA256 Package Other Pin Definitions	
Table 18. Internal Register Map	
Table 19. Identification Registers	
Table 20. XRS MDIO Registers	
Table 21. MDIO Address	
Table 22. I2C Address	
Table 23. Definition of LanID, NetId, ring NetId and PathId	
Table 24. Resulting Lanld and NetId	
Table 25. Allowed Port Modes	
Table 26. Switch Configuration Register Groups	
Table 27. General Switch Configuration Registers	
Table 28. Frame Timestamp Registers	
Table 29. Virtual LAN Configuration Registers	
Table 30. Port Configuration Register Groups	
Table 31. General Configuration and State Registers	
Table 32. HSR Registers	
Table 33. Delay Correction Values for PTP Registers	
Table 34. PTP Registers	
Table 35. Counter Registers (not in XRS3003)	
Table 36. Inbound Policy Registers	
Table 37. RTC Registers	
Table 38. TS Registers (not in XRS3003)	
Table 39. GPIO Block Register Map	
Table 40. Absolute Maximum Ratings, EQFP144 Package	
Table 41. Absolute Maximum Ratings, FBGA256 Package	
Table 42. Recommended Operating Conditions, EQFP144 Package	
Table 43. Recommended Operating Conditions, FBGA256 Package	
Table 44. Thermal Resistance, EQFP144 Package	
Table 45. Thermal Resistance, FBGA256 Package	
Table 46. Current Consumption, XRS7004E	
Table 47. Current Consumption, XRS7003E	
Table 48. Current Consumption, XRS7004F	
Table 49. Current Consumption, XRS7003F	
Table 50. Current Consumption, XRS3003F	
Table 51. I/O Characteristics, EQFP144 Package	
Table 52. I/O Characteristics, FBGA256 Package	
Table 53. Input Clock Timing (CLK)	
Table 54. Reset Timing	
Table 55. RGMII Timing	
Table 56. RMII Timing	
Table 57. I2C Timing	
Table 58. MDIO Timing	
Table 59. EQFP144 Package Information	
Table 60. EQFP144 Package Dimensions in Millimeters	
Table 60. EGT P 144 Package Dimensions in Minimeters Table 61. FBGA256 Package Information	
Table 62. FBGA256 Package Dimensions in Millimeters	
Table 62. PBGA250 Package Dimensions in Minimeters Table 63. Part Ordering Numbers	

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

Revision History

Rev	Date	Comments	
1.0	20.11.2015	First release	
1.1	15.4.2016	XRS3003 and FBGA256 package added. JTAG interface removed.	
1.2	11.5.2016	Interface timing changes: - I2C input data setup time min changed from 0 ns to 50 ns - RMII output delay max changed from 12 ns to 13 ns - Power supply ramp time max changed from 50 ms to 3 ms RGMII port indexes changed from 02 to 13.	
1.3	6.11.2017	Added register bit for enabling/disabling support for independent VLANs. (Bit 7 in GENERAL register)	

Arrow Electronics Inc retains the right to make changes to this document at any time, without notice. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Arrow Electronics Inc makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purposes. Further, Arrow Electronics Inc does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Arrow Electronics Inc assumes no responsibility or liability whatsoever, and Arrow Electronics disclaims any express or implied warranty, relating use of Arrow Electronics Inc products liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Arrow Electronics Inc products are not intended for use in medical, lifesaving, life sustaining, critical control or safety systems, or in nuclear facility applications. Do not use Arrow Electronics Inc products in these types of equipment or applications.

XRS7000 and XRS3000 User Manual, Version 1.3

1. CONVENTIONS USED IN THIS DOCUMENT

Signal names are written in this document with SignalName style. Block names are written with Capital first letter.

Register descriptions in this document follow these rules: Unless otherwise stated, all the bits that activate or enable something are active when their value is 1 and inactive when their value is 0. The explanation of register bit types is the following:

- RO = Read Capable Only. The bits marked with RO can be read. Writing to these bits is allowed unless otherwise stated. If writing is allowed, it does not affect the value of the bit.
- R/W = Read and Write capable. The bits can be read and written. Writing 1 to the bit makes its value 1.
 Writing 0 to the bit makes its value 0.
- R/C = Read and Clear capable. The bits can be read and cleared. Writing 0 to the bit makes its value 0.
 Writing 1 does nothing.
- R/SC = Read, Write and Self Clear. The bits can be read and written. Writing 0 to the bit does nothing.
 Writing 1 to the bit makes its value 1 for a while, but after that the value automatically returns back to 0.

The bits marked as *Reserved* should not be written anything but 0, even if they are marked as read capable only, because their function may change in future versions.

XRS7000 and XRS3000 User Manual, Version 1.3

2. TYPICAL APPLICATIONS

Typical applications for XRS7004, XRS7003 and XRS3003 are presented in Figure 1, Figure 2, Figure 3 and Figure 4.

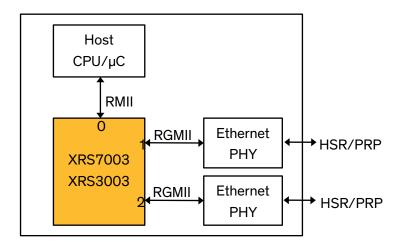
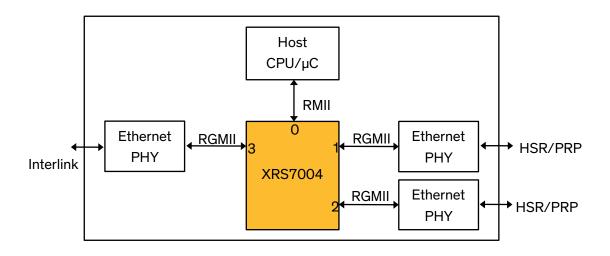



Figure 1. End-Node Application

XRS7000 and XRS3000 User Manual, Version 1.3

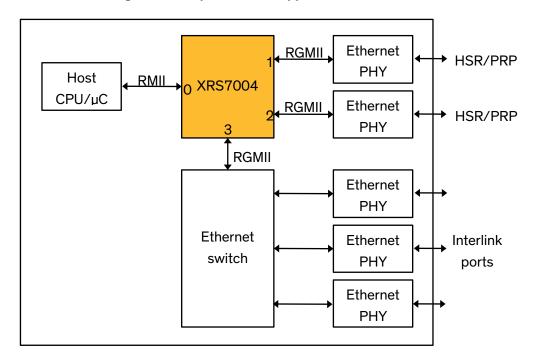
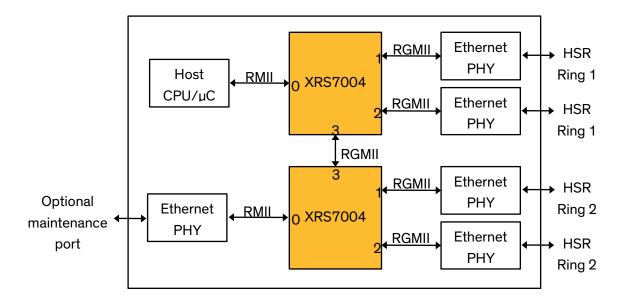
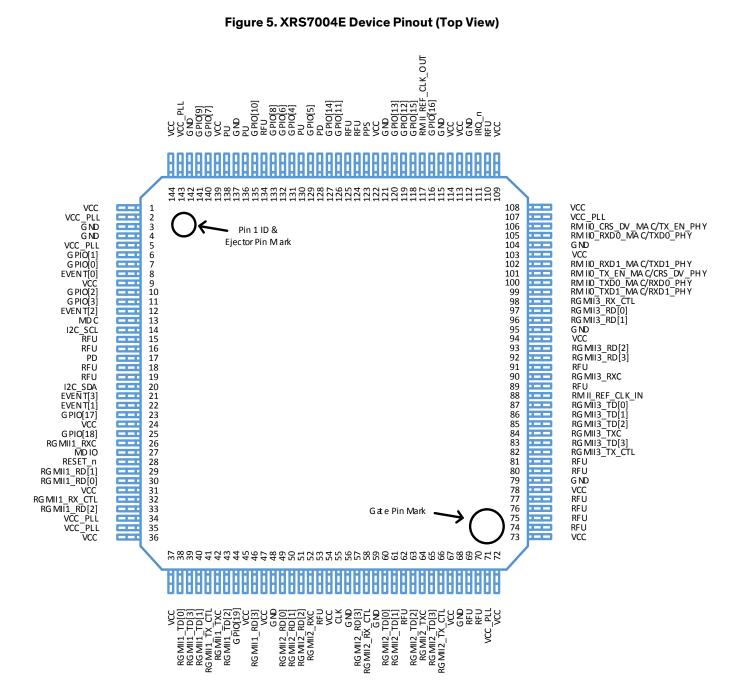



Figure 3. Multiport RedBox Application


XRS7000 and XRS3000 User Manual, Version 1.3

3. PIN DESCRIPTION

Devices are available in two different packages; XRS7004E and XRS7003E have EQFP144 package (Chapter 3.1) and XRS7004F, XRS7003F and XRS3003F have FBGA256 package (Chapter 3.2).

3.1 EQFP144 Package

Pin type definitions are listed in Table 2.

XRS7000 and XRS3000 User Manual, Version 1.3

Table 2. Pin Types		
Pin type Definition		
1/0	Input and output	
1	Input only	
0	Output only	
Power	Operating power for the device	
Ground	Ground connection for the device	

The pin definitions of XRS7004E (Figure 5) and XRS7003E are presented in the following tables (Table 3 to Table 9). Note that the only difference between the pinouts of XRS7004E and XRS7003E is that XRS7003E has two RGMII interfaces (RGMII1 and RGMII2) while XRS7004E has three RGMII interfaces (RGMII1, RGMII2 and RGMII3). At XRS7003E the RGMII3 input pins have internal pull-ups and RGMII3 output pins are driven low. At XRS7003 it is allowed to leave the RGMII3 input pins floating, drive them low or high or connect them to an RGMII interface of another chip.

Generally it is recommended to pull or tie all the unused input pins up or down unless otherwise stated in the Pin Description.

Pin Number	Pin Name	Pin Type	Pin Description
26	RGMII1_RXC	1	Receive Clock. The RX clock is 2.5 MHz for
52	RGMII2_RXC		10 Mbit/s, 25 MHz for 100 Mbit/s and 125
90	RGMII3_RXC		MHz for 1000 Mbit/s.
			Note that the PCB is required to add 1.5 ns
			to 2.0 ns more delay to the clock line than
			the other lines, unless the other end (PHY)
			has configurable RX clock delay. See RGMII
			timing in Chapter 10.5.3.
32	RGMII1_RX_CTL	I	Combined RXDV and RXER.
58	RGMII2_RX_CTL		
98	RGMII3_RX_CTL		
30	RGMII1_RD[0]	I	Receive Data. Double data rate at speed of
29	RGMII1_RD[1]		1000 Mbit/s and single data rate at speeds
33	RGMII1_RD[2]		of 10/100 Mbit/s.
46	RGMII1_RD[3]		
49	RGMII2_RD[0]		
50	RGMII2_RD[1]		
51	RGMII2_RD[2]		
57	RGMII2_RD[3]		
97	RGMII3_RD[0]		
96	RGMII3_RD[1]		
93	RGMII3_RD[2]		
92	RGMII3_RD[3]		

Table 3. EQFP144 Package RGMII Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
42 64 84	RGMII1_TXC RGMII2_TXC RGMII3_TXC	0	Transmit Clock. The TX clock is 2.5 MHz for 10 Mbit/s, 25 MHz for 100 Mbit/s and 125 MHz for 1000 Mbit/s. Note that the PCB is required to add 1.5 ns to 2.0 ns more delay to the clock line than the other lines, unless the other end (PHY) has configurable TX clock delay. See RGMII timing in Chapter 10.5.3. Note that the IO voltage is 3.3V and therefore the other end has to be 3.3V tolerant.
41 66 82	RGMII1_TX_CTL RGMII2_TX_CTL RGMII3_TX_CTL	0	Combined TXEN and TXER. Note that the IO voltage is 3.3V and therefore the other end has to be 3.3V tolerant.
38 40 43 39 60 61 63 65 87 86 85 85 83	RGMII1_TD[0] RGMII1_TD[1] RGMII1_TD[2] RGMII2_TD[3] RGMII2_TD[0] RGMII2_TD[1] RGMII2_TD[2] RGMII3_TD[0] RGMII3_TD[1] RGMII3_TD[2] RGMII3_TD[3]	0	Transmit Data. Double data rate at speed of 1000 Mbit/s and single data rate at speeds of 10/100 Mbit/s. Note that the IO voltage is 3.3V and therefore the other end has to be 3.3V tolerant.

XRS7000 and XRS3000 User Manual, Version 1.3

Pin Number	Pin Name	Pin Type	Pin Description
105	RMII0_RXD0_MAC/TXD0_PHY	I	RMII input data. In PHY mode this is
102	RMII0_RXD1_MAC/TXD1_PHY		transmit data. In MAC mode this is receive
			data.
106	RMIIO_CRS_DV_MAC/TX_EN_PHY		RMII input data valid. In PHY mode this is
			TX_EN. In MAC mode this is CRS_DV.
100	RMII0_TXD0_MAC/RXD0_PHY	0	RMII output data. In PHY mode this is
99	RMII0_TXD1_MAC/RXD1_PHY		receive data. In MAC mode this is transmit
			data.
101	RMII0_TX_EN_MAC/CRS_DV_PHY	0	RMII output data valid. In PHY mode this is
			CRS_DV. In MAC mode this is TX_EN.
88	RMII_REF_CLK_IN	I	RMII 50 MHz reference clock input. The
			same reference clock must be used for the
			both ends.
117	RMII_REF_CLK_OUT	0	50 MHz reference clock output. Can be
			connected to RMII_REF_CLK_IN or left
			unconnected.

Table 4. EQFP144 Package RMII Pin Definitions

Table 5. EQFP144 Package Register Access and Interrupt Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
13	MDC	1	Management Data Clock
			If the interface is not used, the signal must
			be pulled or tied up or down.
27	MDIO	1/0	Management Data I/O. Must be externally
			pulled up. 10 k Ω pull-up resistor
			recommended.
14	I2C_SCL	I	I2C clock
			If the interface is not used, the signal must
			be pulled or tied up or down.
20	I2C_SDA	I/O	I2C data. Open drain. Must be externally
			pulled up. 10 k Ω pull-up resistor
			recommended.
111	IRQ_n	0	Interrupt Request Output. Active low, open
			drain. 10 k Ω pull-up resistor
			recommended.

XRS7000 and XRS3000 User Manual, Version 1.3

Pin Number	Pin Name	Pin Type	Pin Description
8	EVENT[0]	I	Event Input. Time Stamper (TS, Chapter 8)
22	EVENT[1]		can be used to time stamp the rising edges
12	EVENT[2]		of the signal. Signals with frequency of 0 Hz
21	EVENT[3]		to 25 MHz are supported. Pull or tie unused
	L - J		inputs up or down.
123	PPS	0	Pulse Per Second output. A pulse with
			length of 20 μ s occurring once a second.
			The rising edge of the pulse is when
			nanoseconds value of the RTC wraps
			around and the seconds value is
			incremented by one second.

Table 6. EQFP144 Package Time Synchronization Pin Definitions

Table 7. EQFP144 Package Clock and Reset Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
55	CLK	1	25 MHz reference clock input.
28	RESET_n	I	Active low hardware reset signal.

Table 8. EQFP144 Package Power and Ground Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
9	VCC	Power	3.3V operating power for the device.
24			
31			
54			
45			
67			
78			
94			
103			
113			
139			
122			
73			
72			
47			
37			
36			
144			
114			
109			
108			
1			

Pin Number	Pin Name	Pin Type	Pin Description
35	VCC_PLL	Power	3.3V power for the internal PLL blocks of
34			the device.
5			Use separate power islands for VCC_PLL
107			and VCC. VCC_PLL must be isolated from
143			other power planes by using a ferrite bead
71			or equivalent method. The ferrite bead
2			should have low DC resistance and high
			impedance at 100 MHz.
3	GND	Ground	Ground connection for the device.
4			Note that the Exposed pad at the bottom of
95			the device has to be connected to ground
79			as well.
68			
59			
56			
48			
142			
137			
121			
115			
112			
104			
Exposed			
pad			

XRS7000 and XRS3000 User Manual, Version 1.3

Pin Number	Pin Name	Pin Type	Pin Description
7	GPIO[0]	1/0	General Purpose Input/Output.
		1/0	
6	GPIO[1]		These pins can be controlled by the user,
10	GPIO[2]		see GPIO registers in Chapter 9.1. It is
11	GPIO[3]		recommended to tie the unused GPIO pins
131	GPIO[4]		to GND.
129	GPIO[5]		GPIO[0:1] are multi-function pins that are
132	GPIO[6]		used to configure the I2C and MDIO
140	GPIO[7]		addresses of the device during startup, see
133	GPIO[8]		Chapter 5.4.
141	GPIO[9]		
135	GPIO[10]		
126	GPIO[11]		
119	GPI0[12]		
120	GPI0[13]		
127	GPI0[14]		
118	GPI0[15]		
116	GPI0[16]		
23	GPIO[17]		
25	GPIO[18]		
44	GPIO[19]		
17	PD	1	Pull Down. These pins must be pulled down
128			to GND. 1 k Ω pull-down resistors
			recommended.
130	PU	1/0	Pull Up. These pins must be pulled up to
136			3.3V VCC. 1 kΩ pull-up resistors
138			recommended. Use individual pull-up
			resistor for each pin. Do not connect these
			pins to each other.

Table 9. EQFP144 Package Other Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
76	RFU	-	Reserved for Future Use. Do Not Connect
77			these pins anywhere as the purpose of
124			these pins may change in future versions.
125			
134			
15			
16			
18			
19			
53			
62			
69			
70			
74			
75			
80			
81			
89			
91			
110			

3.2 FBGA256 Package

					Figu	re 6. X	R5/00	4F De	lice Pil	nout (I	op vie	W)					
										1	1	1	1	1	1	1	
	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	
A	GND	GPI O [0]	RFU	GPI O [1]	RFU	GPI O [3]	GPI O [5]	GPI O [7]	RFU	GPI O [9]	GPI O [10]	GPI O [12]	RFU	RFU	RFU	GND	А
В	MD C	EVEN T[0]	RFU	RFU	GPI 0 [2]	GPI O [4]	GPI O [6]	RFU	GPI O [8]	RFU	GPI O [11]	GPI O [13]	RFU	GND	RFU	RFU	В
С	MD IO	I2C_ SDA	I2C_ SCL	RFU	RFU	RFU	VCCI O33	GND	RFU	RFU	GND	RFU	RFU	RFU	RFU	RFU	С
D	IRQ_ n	GND	GND	VCC_ PLL	VCCA	GND	VCC I 033	VCCI O33	RFU	VCCI O33	VCCI O33	RFU	VCC_ PLL	RFU	RFU	RFU	D
E	EVEN T[1]	GND	GPI O [14]	VCCA	VCCA	GND	PU	PU	RFU	RFU	RFU	VCCA	GND	RFU	RFU	RMI IO_ CRS_D V_MAC	Е
F	EVEN T[2]	RESE T_n	GND	GPI O [15]	PPS	VCC	PU	PD	CLK	GND	GND	RFU	VCCI O33	RFU	GND	RMI IO_ RXD1_ MAC	F
G	RFU	GPI O [16]	GND	VCCI O33	GPI O [17]	GND	VCC	GND	VCC	GND	GND	RFU	VCCI O33	RFU	RMIIO_ RXDO_ MAC	RMI IO_ TX DO_ MAC	G
Н	RFU	RFU	PD	VCCI O33	RFU	GND	GND	VCC	VCC	VCC	GND	RFU	VCCI O33	GND	RMIIO_ TX_EN _MAC	RMI IO_ REF_CL K_OUT	н
J	GPI O [18]	EVEN T[3]	RFU	VCCI O33	GPI O [19]	GND	VCC	VCC	VCC	GND	GND	RFU	VCCI O33	RFU	RMII_ REF_CL K_IN	RFU	J
K	GND	RFU	GND	VCCI O25	RFU	GND	GND	VCC	GND	VCC	GND	RFU	VCCI O25	RFU	RMIIO_ TXD1_ MAC	GND	К
L	RGMI I1_R D[1]	RFU	RGMI I1_ RXC	VCCI O25	VCCA	GND	GND	GND	GND	GND	GND	RFU	VCCI O25	GND	RFU	RFU	L
N	RFU	RGMI I1_R D[2]	RFU	GND	VCC_ PLL	RFU	RFU	RFU	RGMI I3_ RXC	RFU	RFU	V CC A	VCCI O25	RFU	RFU	RFU	Μ
N	RGMII1 _RX_ CTL	RGMI I1_R D[0]	RFU	RFU	RFU	VCCI O25	VCCI O25	VCCI O25	GND	VCCI O25	VCCI O25	GND	VCC_ PLL	RFU	GND	RGMI I3_T D[1]	Ν
Ρ	RGMI I1_R D[3]	RFU	GND	RFU	RFU	RFU	GND	RGMI I2_ RXC	RFU	RGMI I3 _RX_ CTL	RGMI 13_R D[1]	RFU	RFU	RFU	RFU	RGMI 13_T D[2]	Ρ
R	RGMI I1_T D[0]	RGMI I1_T D[2]	RGMI I1_ TXC	RGMI12 _RX_ CTL	RGMI 12_R D[2]	RGMI 12_R D[3]	RGMI 12_T D[0]	RGMI I2_T D[1]	RGMI 12_T D[2]	RGMI 12_T D[3]	RGMI 13_R D[3]	RGMI I3_R D[0]	GND	RGMI I3_ TXC	RGMI 13_T D[3]	RFU	R
т	GND	RGMII1 _TX_ CTL	RGMI I1_T D[1]	RGMI I1_T D[3]	RGMI I2_R D[1]	RGMI 12_R D[0]	RFU	RGMI 12_ TXC	RGMI12 _TX_ CTL	GND	RFU	RGMI 13_R D[2]	RFU	RGMI 13_T D[0]	RGMI13 _TX_ CTL	GND	Т
	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	•
		~	5	T	5	0	/	0	1	0	1	2	3	4	5	6	
										U	1	~	5	-	5	0	

Figure 6. XRS7004F Device Pinout (Top View)

Pin type definitions are listed in Table 10.

XRS7000 and XRS3000 User Manual, Version 1.3

Table 10. Pin Types				
Pin type Definition				
1/0	Input and output			
1	Input only			
0	Output only			
Power	Operating power for the device			
Ground	Ground connection for the device			

The pin definitions of XRS7004F (Figure 5), XRS7003F and XRS3003F are presented in in the following tables (Table 11 to Table 17). Note that the only difference between the pinouts of XRS7004F and XRS7003F is that XRS7003F has two RGMII interfaces (RGMII1 and RGMII2) while XRS7004F has three RGMII interfaces (RGMII1, RGMII2 and RGMII3). At XRS7003F and XRS3003F the RGMII3 input pins have internal pull-ups and RGMII3 output pins are driven low. At XRS7003F and XRS3003F it is allowed to leave the RGMII3 input pins floating, drive them low or high or connect them to an RGMII interface of another chip.

The pinout of XRS3003F differs from the pinout of 7003F in the following ways:

- EVENT[0...3] pins are reserved in XRS3003F. Connect like it was XRS7003/XRS7004, or leave the pins floating. XRS3003F has weak internal pull-up in EVENT signals.
- I2C pins (I2C_SCL, I2C_SDA) are reserved in XRS3003F. Connect like it was XRS7003/XRS7004, or leave the pins floating. XRS3003F has weak internal pull-up in I2C pins.

Otherwise the pinouts are similar, and the devices are interchangeable.

Pin Number	Pin Name	Pin Type	Pin Description
L3	RGMII1_RXC		Receive Clock. The RX clock is 2.5 MHz for
P8	RGMII2_RXC		10 Mbit/s, 25 MHz for 100 Mbit/s and 125
М9	RGMII3_RXC		MHz for 1000 Mbit/s.
			Note that the PCB is required to add 1.5
			ns to 2.0 ns more delay to the clock line
			than the other lines, unless the other end
			(PHY) has configurable RX clock delay. See
			RGMII timing in Chapter 10.5.3.
N1	RGMII1_RX_CTL	1	Combined RXDV and RXER.
R4	RGMII2_RX_CTL		
P10	RGMII3_RX_CTL		
N2	RGMII1_RD[0]	1	Receive Data. Double data rate at speed of
L1	RGMII1_RD[1]		1000 Mbit/s and single data rate at speeds
M2	RGMII1_RD[2]		of 10/100 Mbit/s.
P1	RGMII1_RD[3]		
Т6	RGMII2_RD[0]		
Т5	RGMII2_RD[1]		
R5	RGMII2_RD[2]		

Table	11.	FBGA256	Package	RGMII	Pin Definitions
labic		I DGALOO	i uonugo		

XRS7000 and XRS3000 User Manual, Version 1.3

R6	RGMII2_RD[3]		
R12	RGMII3_RD[0]		
P11	RGMII3_RD[1]		
T12	RGMII3_RD[2]		
R11	RGMII3_RD[3]		
R3	RGMII1_TXC	0	Transmit Clock. The TX clock is 2.5 MHz for
Т8	RGMII2_TXC		10 Mbit/s, 25 MHz for 100 Mbit/s and 125
R14	RGMII3_TXC		MHz for 1000 Mbit/s.
			Note that the PCB is required to add 1.5
			ns to 2.0 ns more delay to the clock line
			than the other lines, unless the other end
			(PHY) has configurable TX clock delay. See
			RGMII timing in Chapter 10.5.3.
T2	RGMII1_TX_CTL	0	Combined TXEN and TXER.
Т9	RGMII2_TX_CTL		
T15	RGMII3_TX_CTL		
R1	RGMII1_TD[0]	0	Transmit Data. Double data rate at speed of
Т3	RGMII1_TD[1]		1000 Mbit/s and single data rate at speeds
R2	RGMII1_TD[2]		of 10/100 Mbit/s.
T4	RGMII1_TD[3]		
R7	RGMII2_TD[0]		
R8	RGMII2_TD[1]		
R9	RGMII2_TD[2]		
R10	RGMII2_TD[3]		
T14	RGMII3_TD[0]		
N16	RGMII3_TD[1]		
P16	RGMII3_TD[2]		
R15	RGMII3_TD[3]		

Table 12. FBGA256 Package RMII Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
G15	RMII0_RXD0_MAC/TXD0_PHY	1	RMII input data. In PHY mode this is
F16	RMII0_RXD1_MAC/TXD1_PHY		transmit data. In MAC mode this is receive
			data.
E16	RMIIO_CRS_DV_MAC/TX_EN_PHY		RMII input data valid. In PHY mode this is
			TX_EN. In MAC mode this is CRS_DV.
G16	RMII0_TXD0_MAC/RXD0_PHY	0	RMII output data. In PHY mode this is
K15	RMII0_TXD1_MAC/RXD1_PHY		receive data. In MAC mode this is transmit
			data.
H15	RMII0_TX_EN_MAC/CRS_DV_PHY	0	RMII output data valid. In PHY mode this is
			CRS_DV. In MAC mode this is TX_EN.
J15	RMII_REF_CLK_IN		RMII 50 MHz reference clock input. The
			same reference clock must be used for the
			both ends.

H16	RMII_REF_CLK_OUT	0	50 MHz reference clock output. Can be
			connected to RMII_REF_CLK_IN or left
			unconnected.

Table 13. FBGA256 Package Register Access and Interrupt Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
B1	MDC	I	Management Data Clock
			If the interface is not used, the signal must
			be pulled or tied up or down.
C1	MDIO	I/O	Management Data I/O. Must be externally
			pulled up. 10 k Ω pull-up resistor
			recommended.
C3	I2C_SCL	1	I2C clock
			If the interface is not used, the signal must
			be pulled or tied up or down.
C2	I2C_SDA	1/0	I2C data. Open drain. Must be externally
			pulled up. 10 k Ω pull-up resistor
			recommended.
D1	IRQ_n	0	Interrupt Request Output. Active low, open
			drain. 10 k Ω pull-up resistor
			recommended.

Table 14. FBGA256 Package Time Synchronization Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
B2	EVENT[0]	I	Event Input. Time Stamper (TS, Chapter 8)
E1	EVENT[1]		can be used to time stamp the rising edges
F1	EVENT[2]		of the signal. Signals with frequency of 0 Hz
J2	EVENT[3]		to 25 MHz are supported. Pull or tie unused
			inputs up or down.
F5	PPS	0	Pulse Per Second output. A pulse with
			length of 20 μ s occurring once a second.
			The rising edge of the pulse is when
			nanoseconds value of the RTC wraps
			around and the seconds value is
			incremented by one second.

Table 15. FBGA256 Package Clock and Reset Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
F9	CLK	I	25 MHz reference clock input.
F2	RESET_n	1	Active low hardware reset signal.

Pin Number	Table 16. FBGA256 Package	Pin Type	Pin Description
K8	VCC	Power	1.2V operating power for the device.
K10		1 OWCI	1.2 v operating power for the device.
J9			
18 10			
J7			
H9			
H8			
H10			
G9			
G7			
F6			
M5	VCC_PLL	Power	1.2V operating power for the device
D13			internal PLL blocks.
D4			Use separate power island for VCC_PLL.
N13			VCC_PLL must be isolated from other 1.2V
			power planes by using a ferrite bead or
			equivalent method. The ferrite bead should
			have low DC resistance and high
			impedance at 100 MHz.
L5	VCCA	Power	2.5V operating power for the device
E12			internal PLL blocks.
E4			Use separate power island for VCCA. VCCA
D5			must be isolated from other 2.5V power
E5			planes by using a ferrite bead or equivalent
M12			method. The ferrite bead should have low
			DC resistance and high impedance at 100
			MHz.
H4	VCCIO33	Power	3.3V IO voltage. The IO voltage for all the
G4			interfaces except RGMII.
J4			
J13			
H13			
G13			
F13			
D11			
D10			
D8			
D7			
C7			
L4	VCCIO25	Power	2.5V IO voltage for RGMII interfaces.
K4			
N8			
N7			
N6			

Table 16. FBGA256 Package Power and Ground Pin Definitions

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

N11			
N10			
M13			
L13			
K13			
D2	GND	Ground	Ground connection for the device.
	GND	Ground	Ground connection for the device.
F3			
E2			
T16			
T10			
T1			
R13			
P7			
P3			
N9			
N15			
N12			
M4			
L14			
К9			
K7			
КЗ			
K16			
K1			
J10			
H7			
H14			
G8			
G3			
G10			
F15			
E6			
E13			
D6			
D3			
C8			
C11			
B14			
A16			
A1			
F10			
F11			
G6			
G11			
H6			
H11			
J6			
		l	

J11		
K6		
K11		
L6		
L7		
L8		
L9		
L10		
L11		

Table 17. FBGA256 Package Other Pin Definitions

Pin Number	Pin Name	Pin Type	Pin Description
A2	GPIO[0]	1/0	General Purpose Input/Output.
A4	GPIO[1]		These pins can be controlled by the user,
B5	GPIO[2]		see GPIO registers in Chapter 9.1. It is
A6	GPIO[3]		recommended to tie the unused GPIO pins
B6	GPIO[4]		to GND.
A7	GPIO[5]		GPIO[0:1] are multi-function pins that are
B7	GPIO[6]		used to configure the I2C and MDIO
A8	GPIO[7]		addresses of the device during startup, see
B9	GPIO[8]		Chapter 5.4.
A10	GPIO[9]		
A11	GPIO[10]		
B11	GPIO[11]		
A12	GPIO[12]		
B12	GPIO[13]		
E3	GPIO[14]		
F4	GPIO[15]		
G2	GPIO[16]		
G5	GPIO[17]		
J1	GPIO[18]		
J5	GPIO[19]		
F8	PD	1	Pull Down. These pins must be pulled down
H3			to GND. 1 k Ω pull-down resistors
			recommended.
E7	PU	I/O	Pull Up. These pins must be pulled up to
E8			3.3V VCCIO. 1 k Ω pull-up resistors
F7			recommended. Use individual pull-up
			resistor for each pin. Do not connect these
			pins to each other's.
A3	RFU	-	Reserved for Future Use. Do Not Connect
A5			these pins anywhere as the purpose of
A9			these pins may change in future versions.
A13			
A14			

Pin description

A15			
B3			
B4			
B8			
B10			
B13			
B15			
B16			
C4			
C5			
C6			
C9			
C10			
C12			
C13			
C14			
C15			
C16			
D9			
D12			
D14			
D15			
D16			
E9			
E10			
E11			
E14			
E15			
F12			
F14			
G1			
G12			
G12 G14			
H1			
H2			
H5			
H12			
J3			
J12			
J14			
J16			
K2			
K5			
K12			
K14			
L2			
L12			
L	<u>.</u>	C	•

Pin description

L15		
L16		
M1		
МЗ		
M6		
M7		
M8		
M10		
M11		
M14		
M15		
M16		
N3		
N4		
N5		
N14		
P2		
P4		
P5		
P6		
P9		
P12		
P13		
P14		
P15		
R16		
Т7		
T11		
T13		

4. FUNCTIONAL OVERVIEW

Top level block diagram is presented in Figure 7. The most important block is the Redundant Switch (RS) that forwards Ethernet frames between Ethernet (RMII and RGMII) interfaces. For PTP (Precision Time Protocol) functionality device internal time is kept in RTC (Real-Time Clock). The internal time can be transferred outside the device or the device can be synchronized to external time with help of PPS (Pulse Per Second) output or Event Inputs. The functionality of the device is controlled by the host system using either MDIO or I2C protocol to access device internal registers.

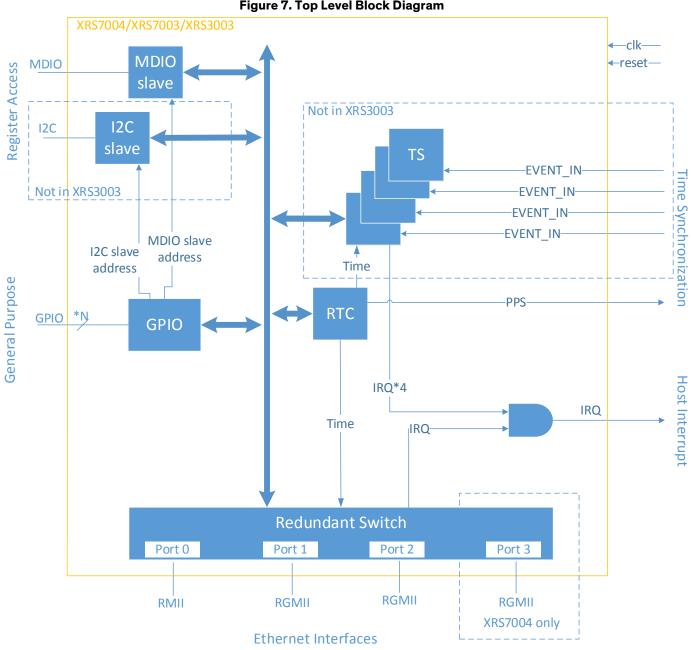


Figure 7. Top Level Block Diagram

5. REGISTER INTERFACE

The functionality of XRS7004/XRS7003/XRS3003 is controlled through registers. The internal register map is presented in Table 18. The registers are accessible using MDIO (Chapter 5.2) or I2C (Chapter 5.3) interface. XRS7004 and XRS7003 support both MDIO and I2C, XRS3003 supports only MDIO.

Address Offset	Register Set	Section	Table
0x0000 0000	Device Identification	5.1	Table 19
0x0001 0000	GPIO (General Purpose I/O)	9.1	Table 39
0x0020 0000	Port 0 Configuration Registers	6.10	Table 30
0x00210000	Port 1 Configuration Registers	6.10	Table 30
0x00220000	Port 2 Configuration Registers	6.10	Table 30
0x0023 0000	Port 3 Configuration Registers	6.10	Table 30
	(only in XRS7004)		
0x0028 0000	RTC (Real-Time Clock)	7.1	Table 37
0x0029 0000	TS0 (Time Stamper 0) (not in XRS3003)	8.1	Table 38
0x0029 8000	TS1 (Time Stamper 1) (not in XRS3003)	8.1	Table 38
0x002A 0000	TS2 (Time Stamper 2) (not in XRS3003)	8.1	Table 38
0x002A 8000	TS3 (Time Stamper 3) (not in XRS3003)	8.1	Table 38
0x0030 0000	Switch Configuration Registers	6.9	Table 26

Table 18. Internal Register Map

5.1 Device Identification Registers

For identifying the device XRS7004, XRS7003 and XRS3003 have identification registers in the beginning of the register address space. The identification registers are presented in Table 19.

Address	Register	Description					
0x0000	DEV_ID0	Reset: 0 x 01 00 (XRS7003E), 0 x 02 00 (XRS7004E),					
		0 x 01 01 (XRS7003F), 0 x 02 01 (XRS7004F),					
		0 x 03 01 (XRS3003F)					
		Device Identification register 0.					
		Bits 15-0: RO Static value for identifying device type					
0x0002	DEV_ID1	Reset: 0 x 00 40					
		Device Identification register 1.					
		Bits 15-0: RO Static value for identifying device type					
0x0004	INT_ID0	Reset: 0 x XX XX					
		Manufacturer Internal Revision Identification register 0. Only for					
		manufacturer's own use.					
		Bits 15-0: RO Revision ID, bits 15-0.					

Table 19. Identification Registers

XRS7000 and XRS3000 User Manual, Version 1.3

Address	Register	Descr	Description				
0x0006	INT_ID1	Reset:	Reset: 0 x XX XX				
			Manufacturer Internal Revision Identification register 1. Only for manufacturer's own use.				
		Bits	15-0:	RO	Revision ID, bits 31-16.		
0x0008	REV_ID	Reset:	Reset: 0 x XX XX				
		Revisio	Revision Identification register.				
		Bits	7-0:	RO	Minor Number		
		Bits	15-8:	RO	Major Number		

5.2 MDIO Slave

The MDIO Slave block (see Figure 7) connects the external MDIO bus to device internal bus so that external devices (typically CPU) can access the registers of the device internal blocks to control their functionality.

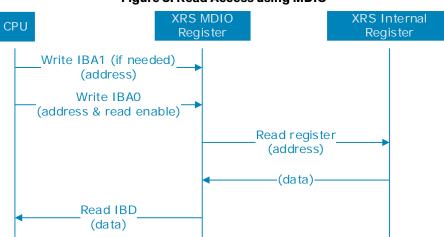
The MDIO registers are presented in Table 20.

MDIO Register	Register	Description					
Address							
0x000x0F	Reserved	Reserved					
0x10	IBA0	Reset: 0 x 00 00					
		Internal bus address0. Address for the internal bus access, lowest bits.					
		The requested action (Read/Write) is performed immediately after writing					
		this register.					
		Bit	0:	R/W	Read/Write		
					0 = Read. Data is available on next read		
					from IBD register (see address 0x14).		
					1 = Write. Data in IBD register is written to		
					internal bus.		
		Bits	15-1:	R/W	Address		
					Bits 15-1 of the address on the internal bus		
					to where data is written or from where data		
					is read. Address bit 0 is always 0 (because of		
					16 bit registers).		
0x11	IBA1	Reset: 0 x 00 00					
		Internal bus address 1. Address for the internal bus access, highest bits.					
		Bits	15-0:	R/W	Address		
					Bits 31:16 of the address on the internal bus		
					to where data is written or from where data		
					is read.		
0x120x13	Reserved	Reserved					

Table 20. XRS MDIO Registers

 $\rm XRS7000$ and $\rm XRS3000$ User Manual, Version 1.3

ibilis



MDIO Register	Register	Descri	Description					
Address								
0x14	IBD	Reset: 0	Reset: 0 x 00 00					
		Internal	the internal bus access.					
		Bits	15-0:	R/W	Data			
					If write command is given to IBAO register,			
					contents of this register are used in write			
					access to internal bus. If read command is			
					given (bit 0 in register IBA0) the read data is			
					copied into this register.			
0x150x1F	Reserved	Reserve	Reserved					

Read access to internal bus using the MDIO registers is presented in Figure 8.

Figure 8. Read Access using MDIO

Write access to internal bus using the MDIO registers is presented in Figure 9.

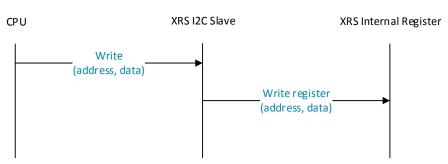
Figure 9. Write Access using MDIO

Note that if accesses are made to the same memory area so that the highest address bits of the device internal bus address are the same in consecutive read or write accesses, it is not necessary to write the register IBA1. Leaving

XRS7000 and XRS3000 User Manual, Version 1.3

out these unnecessary MDIO register writes speeds up the register access. It is also not necessary to write register IBD if consecutive write accesses are made using the same data.

The MDIO registers are in conformance with IEEE std. 802.3. The reserved registers return 0 when read. Writing is not allowed to reserved registers.


The XRS7004/7003/3003 MDIO device address is configurable as presented in Chapter 5.4. The XRS7004/7003/3003 MDIO slave does not react to MDIO accesses with other MDIO device addresses.

It is prohibited to use MDIO and I2C to access the device internal registers at the same time.

5.3 I2C Slave

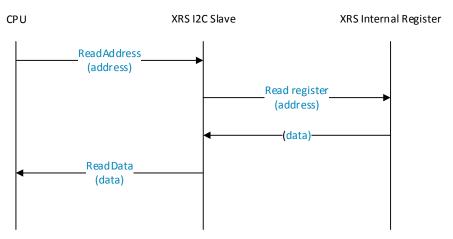
The I2C Slave block (see Figure 7) connects the external I2C bus to device internal bus so that external devices (typically CPU) can access the registers of the device internal blocks to control their functionality. The I2C slave (and the device internal bus) can be accessed by using the I2C address that is configurable as presented in Chapter 5.4. I2C Slave is not present in XRS3003 devices.

I2C accesses are 8-bit oriented. When writing to device internal bus from I2C bus, one write to device internal bus consists of one I2C write access, see Figure 10.

Figure 10. Write Access using I2C

One read from device internal bus consist of two I2C accesses:

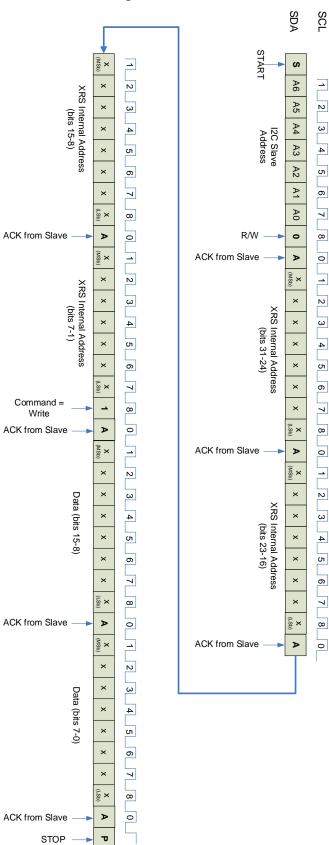
- 1. I2C write access that informs the device internal address to be read.
- 2. I2C read access that reads the data fetched from the device internal address.

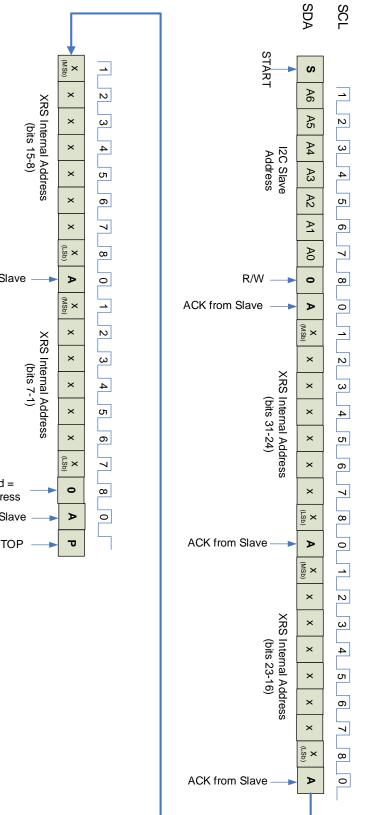

See Figure 11.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

The three types of I2C access (Write, ReadAddress, ReadData) are presented in Figure 12, Figure 13 and Figure 14.




Figure 12. I2C Write

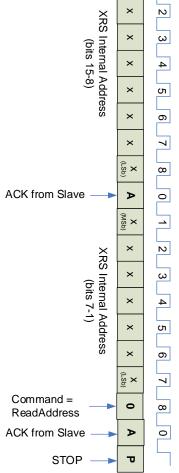
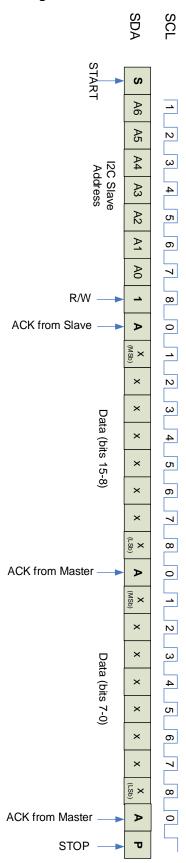

XRS7000 and XRS3000 User Manual, Version 1.3

Figure 13. I2C ReadAddress



XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

XRS7000 and XRS3000 User Manual, Version 1.3

🅖 🛛 **Five Years** Out

36

Figure 14. I2C ReadData

The I2C messages can be combined so that the master can send a new start bit and omit the preceding stop bit.

The I2C interface supports speeds up to 400-kHz Fast-mode (Fm).

5.4 MDIO and I2C Slave Address Configuration

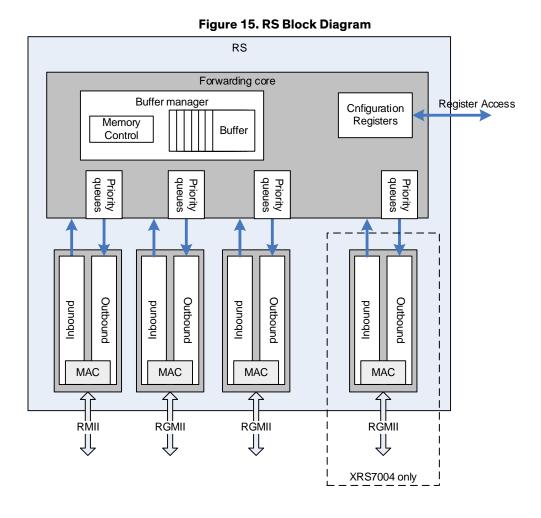
The MDIO and I2C addresses of XRS7004/7003/3003 are configured with the external GPIO signals by pulling the GPIO pin 0 and the GPIO pin 1 up or down in startup. After the reset signal is de-asserted the GPIO pin 0 and the GPIO pin 1 have to be kept steady for at least 10 clock cycles of the *clk* clock. During this period XRS7004/7003/3003 reads the status of the GPIO pins 0 and 1 and configures the MDIO and I2C slave addresses as presented in Table 21 and Table 22. After the period of 10 clock cycles the GPIO pins 0 and 1 can be used for normal I/O.

	MDIO Addre	ess			
GPIO_1,	A4 (MSB)	A3	A2	A1	A0 (LSB)
GPIO_0					
0,0	0	1	0	0	0
0, 1	0	1	0	0	1
1,0	1	1	0	0	0
1, 1	1	1	0	0	1

Table 21.	MDIO	Address
-----------	------	---------

Table 22. I2C Address

	I2C Address	5					
GPIO_1,	A6 (MSB)	A5	A4	A3	A2	A1	A0 (LSB)
GPIO_0							
0,0	0	1	0	0	1	0	0
0, 1	0	1	1	0	1	0	0
1, 0	1	1	0	0	1	0	0
1, 1	1	1	1	0	1	0	0


XRS7000 and XRS3000 User Manual, Version 1.3

6. REDUNDANT SWITCH (RS)

The Redundant Switch (RS) block handles the forwarding of Ethernet frames, HSR/PRP duplicate generation and removal, IEEE 1588 time stamping and all the normal Ethernet switch functionality in XRS7004/7003/3003.

The functional blocks of RS are presented in Figure 15. The functionality of RS can be controlled via configuration registers defined in Chapter 6.9 and 6.10.

RS consists of three main blocks: Forwarding Core and Inbound and Outbound processing. The inbound and outbound processing include Ethernet Media Access Control (MAC).

The Forwarding core is responsible for managing the frames inside the switch. The forwarding core is common for all the ports and it does the actual forwarding of frames between ports. As frames may need to spend time inside the switch, they are stored in into a buffer memory.

Every port has its own MAC and inbound and outbound processing. The inbound and outbound processing of a port is independent from the other ports. The only exception to this is that the inbound processing entities share the same MAC address table.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

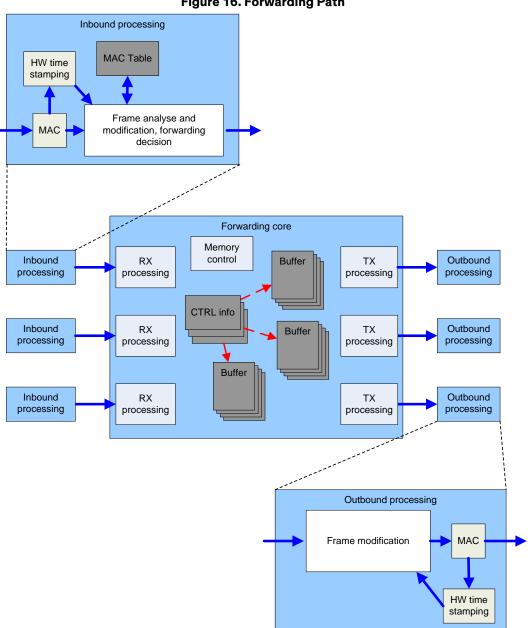
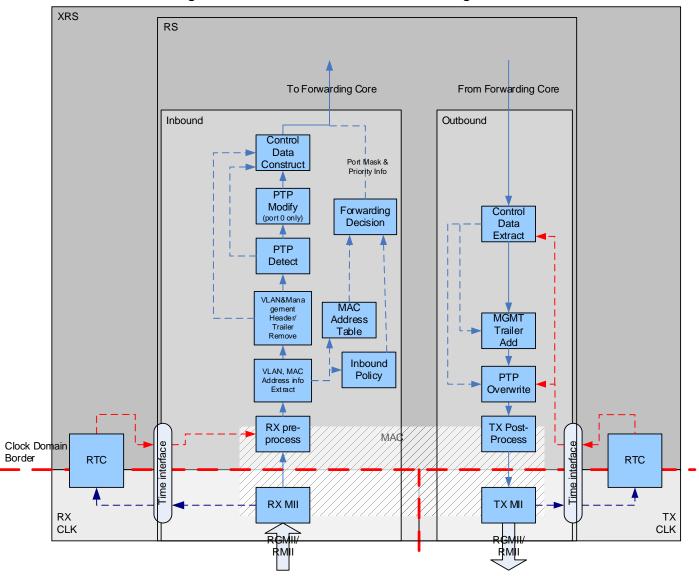


Figure 16. Forwarding Path

Figure 16 presents the processing path of a frame inside RS.

Inbound processing contains Ethernet MAC and data processing blocks that are able to analyze and modify the frame.

The Forwarding core contains RX and TX processing blocks for controlling Inbound and Outbound processing blocks. Memory controller block manages the memory used for storing frames and their control information. Storing of frames is needed because there can be more frames forwarded to an output port than what its capacity is. Frames are stored into the buffer memory in chunks of 512 Bytes. This means that every stored frame consumes N * 512 B of buffer memory, where N=1...3. When frames are stored into the buffer memory waiting to


XRS7000 and XRS3000 User Manual, Version 1.3

be transmitted to an output port, they are in an output priority queue of the output port. The output priority queues contain pointers to the frames; no actual frame data is moved from place to another when queuing the frames.

The main function of the Outbound processing is to send frames from buffer memory to Ethernet. It contains functionality for retrieving data from the buffer memory, time stamping functions for PTP use and Ethernet MAC functionality for sending data to the medium. Every port has its own individual Outbound processing entity.

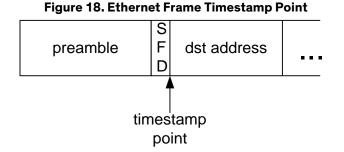
RS Inbound and Outbound processing paths are depicted in Figure 17. The Inbound processing and Outbound processing functionality are completely independent of each other.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

6.1 Inbound Processing

Inbound processing receives frames from Ethernet and transfers them to the buffer memory (see Figure 17). The functionality of inbound processing blocks are described in sub-paragraphs in this chapter.


During reception, Inbound processing does:

- Detect frame errors
- Timestamp frames
- Filter and recognize frames
- Determine the destination port(s) for every frame
- Perform MAC address learning
- Modify frames

6.1.1 RX MII

The RX MII receives frames from the Ethernet PHY. When RX MII is operational and frames arrive from the network, it writes the frames received from the network to the RX pre-process block. While the frame is being received, RX MII calculates CRC over the frame. After the reception of the frame is completed it indicates the status of the CRC calculation.

RX MII block indicates the start of the frame to Timestamp block via Time interface. The timestamp point for a frame is defined in Figure 18.

There are four kinds of errors that can occur while RX MII is receiving a frame. These are: Size Error, CRC Error, Octet Error and Line Error.

Size Error indicates that the received frame is over 1532 bytes long (without preamble, SFD and CRC). In that case the frame is truncated to 1532 bytes, and Size Error is generated.

CRC Error signals that the CRC checksum in the received frame was not the same as the one that was calculated while receiving the frame. This is a result of an error in the data of the received frame and an indication that the frame should be discarded. Size Error, Octet Error and Line Error usually cause also a CRC error to the received frame.

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

Octet Error occurs when the received frame contains an uneven number of half bytes (nibbles). This kind of a frame is not valid.

Line Error indicates that while receiving the Frame the PHY reported RX MII of an error.

All the frames received with an error are dropped by the Forwarding Core and the corresponding error counters are incremented (see Table 35). Also frames whose size is less than 64 bytes are discarded.

6.1.2 Timestamp

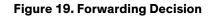
The RX MII block gives start of frame indication to RTC (Chapter 7) to determine the exact value of the reception time. The reception time of the frame is then given to the RX pre-process block and to PTP Modify block (port 0 only).

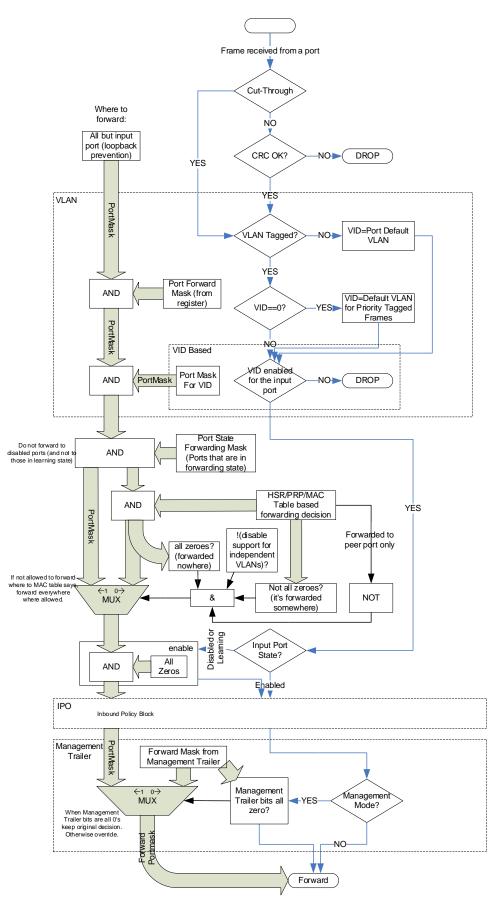
6.1.3 RX Pre-process

The RX pre-process block provides the received frames to the rest of the Inbound processing blocks. The Inbound processing blocks are chained in a row between the RX pre-process and the Forwarding core.

6.1.4 Forwarding Decision

A Forwarding decision is made based on information from the following sources:


- MAC address table (Chapter 6.1.9.4)
- Management Trailer (Chapter 6.1.8)
- Inbound Policy (Chapter 6.1.5)
- VLAN configuration and VLAN ID (Chapter 6.1.10)
- Port state (Port State Register, Table 31)
- HSR tag (Chapter 6.4)
- PRP trailer (Chapter 0)


Regardless of a frame being dropped or not, it is always received to the buffer memory of the forwarding core, which means that it goes through the whole inbound processing chain. If the frame is to be dropped the memory resources allocated by the frame are freed right after the reception.

The forwarding decision is presented in Figure 19. Note that also frames coming into a disabled port are received to the buffer memory, but because their forwarding decision is not to forward them to any port, they are dropped. This behavior however can be changed, and frames can be forwarded from disabled ports to other ports by using Inbound Policy (see Chapter 6.1.5).

🖌 🛛 **Five Years** Out

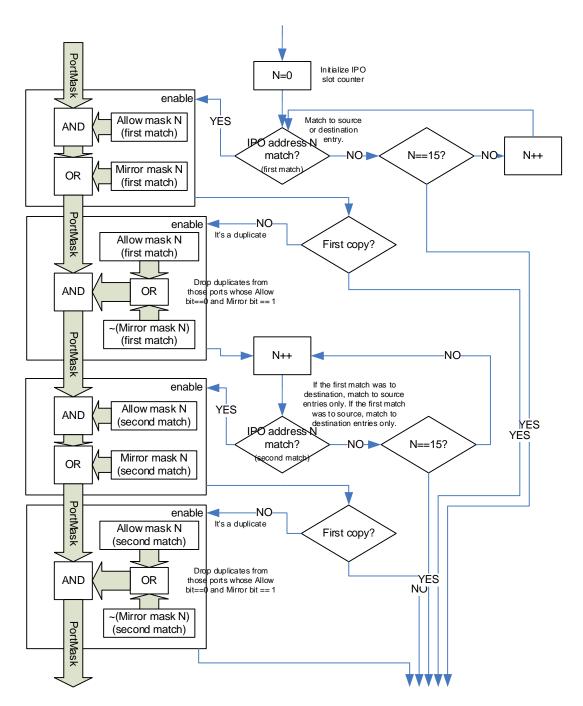
6.1.5 Inbound Policy

Inbound Policy checks the source and the destination MAC addresses of all the received frames. The user can configure through the register interface what kind of a treatment should frames with certain source or destination MAC addresses get. Many protocols use protocol specific multicast MAC addresses and the destination MAC address can therefore be used for forwarding those frames to CPU port and not to other ports. MAC addresses based authentication methods can use the Inbound Policy to enable communication from certain MAC addresses and to not forward frames coming from other MAC addresses.

The alternatives for certain source or destination MAC addresses are the following:

- Drop
- Allow forwarding only to certain ports
- Forced forwarding (mirroring) to certain ports
- Forward without adding HSR tag or PRP trailer

It is also possible to enable or disable:


- All unicast frames
- All multicast frames
- All broadcast frames

See Figure 20 how Inbound Policy affects the forwarding decision.

XRS7000 and XRS3000 User Manual, Version 1.3

The MAC addresses for the inbound policy are configured using Inbound Policy (IPO) registers presented in Table 36. The inbound policy goes through the MAC addresses configured in the IPO registers in ascending order for every incoming frame. It finds the first matching rule (if any) for both source and destination MAC address in the frame and applies the both rules to the forwarding decision (in the order the matches were found). The effect of possible IPO matches to the forwarding decision can be seen in Figure 19. The other settings for the matching frame (priority, whether to send without HSR/PRP tag) are taken from the latest match (if any).

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

6.1.6 Priority-setting

When an incoming frame is VLAN tagged in case of XRS7004/7003 its priority is defined by the VLAN PCP (Priority Code Point) bits in the VLAN tag and the configured priority for the PCP (see register PORT_VLAN_PRIO). If the incoming frame had no VLAN tag, its priority is defined by port default PCP (in PORT_VLAN register) and by the above mentioned configured priority for the PCP. XRS3003 has no VLAN support, XRS3003 accepts frames with VLAN tags, but does not use the information in the tag.

Inbound policy can override the priorities for the frames according to the priority setting in Inbound Policy Configuration Register (Table 36). The priority is used by the Forwarding core to place the frames into correct transmit priority queues.

VLAN PCP (Priority Code Point) for outgoing frames is the same the frame had when it came in. For outgoing frames that came in untagged, the PCP is the default PCP of the input port.

6.1.7 Precision Time Protocol

RS supports PTP message transportation directly over Ethernet (IEEE 1588-2008 Annex F) and over User Datagram Protocol (UDP) over Internet Protocol version 4 (IEEE 1588-2008 Annex D). PTP Mode setting in General Register (see Table 27) selects which one of the two modes is selected. XRS3003 supports only PTP message transportation directly over Ethernet.

Inbound processing always timestamps every incoming Ethernet frame. PTP Detect block recognizes PTP version 2 event messages, determines the type of the event message (Sync, Delay_Req, Pdelay_Req and Pdelay_Resp) and calculates the offsets of the message fields in the frame, see Figure 17.

6.1.7.1 End-to-end Transparent Clock Functionality

RS implements PTP version 2 end-to-end transparent clock functionality in one-step mode with pure hardware. In Inbound processing chain PTP Detect block recognizes IEEE 1588 PTP version 2 event messages that need to have special processing inside Ethernet switches providing PTP transparent clock functionality. In practice what is done to the recognized frames is that RS adds the frame residence time inside the switch to the PTPv2 event message correctionField. The correctionField is modified in Outbound processing, in PTP Overwrite block. The modified message types include Sync, Delay_Req, Pdelay_Req and Pdelay_Resp messages.

6.1.7.2 Peer-to-Peer Transparent Clock Support

From RS point of view Peer-to-peer transparent clock support differs from End-to-end transparent clock support by only a little: In Peer-to-peer transparent clock also the line delay associated with the ingress path is added to the correction field of Sync messages. For this purpose there are registers (PTP_DELAY_NS_LOW, PTP_DELAY_NS_HIGH) for the link delay (see Chapter 6.10.3). For End-to-end transparent clock value zero is written into these registers. For Peer-to-peer transparent clock there has to be software that determines the link delay and writes it into these registers, after which RS is able to make the corrections automatically.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

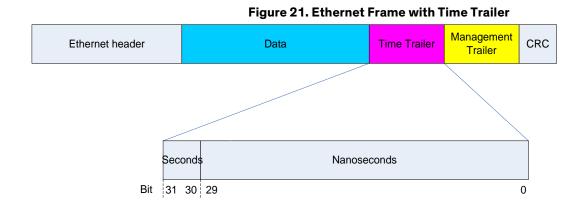
6.1.7.3 Ordinary and Boundary Clock Support

IEEE 1588 PTP Ordinary and Boundary clock implementations are able to achieve significantly better performance if there are hardware features to assist in timestamping and modifying of the PTP frames. Typically such features are located in the Ethernet Controller or in the Ethernet PHY. For systems that do not have such supporting features in the controller or PHY, RS port 0 has frame timestamp modification feature built-in.

6.1.7.3.1 Time Stamp Recording

At inbound and outbound of port 0 timestamps of PTP event messages (Sync, Delay_Req, Pdelay_Req and Pdelay_Resp) are written into a register. In addition to the timestamp, also part of the data in the frame is written into registers to be able to recognize the frame each timestamp corresponds to.

RS is able to store timestamps for eight frames at a time; for four frames in inbound direction and for four frames in outbound direction. The software has to acknowledge the recorded timestamps before RS is able to record more of them (Transfer bit in Transmit Timestamp Control register, see Table 28).


6.1.7.3.2 Frame Modification

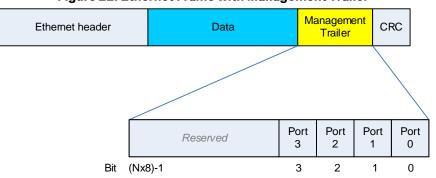
At inbound of port 0 PTP Sync messages are modified when PTP frame modification feature is enabled (Modify Sync Frames bit in General register, see Table 27). The Sync messages are modified so that the exact receive time of the frame is written to the originTimestamp Field (offset of 34 octets from the start of PTP header).

6.1.7.3.3 Time Trailer

At outbound of port 0 timestamps of PTP event messages (Sync, Delay_Req, Pdelay_Req and Pdelay_Resp) can be added to the frames themselves. When the feature is enabled (see General Register, Table 27), a Time Trailer (see Figure 21) is added between the Ethernet frame payload data and Management Trailer (6.1.8). If Management Trailer is not enabled, the Time Trailer is added between the Ethernet frame payload data and the CRC. Time Trailer contains the exact time the frame was sent out of port 0. The time presentation in the trailer includes 30 bits for nanoseconds and two bits for seconds (presenting two lowest bits of the seconds). Time Trailer is never added to other frames than PTP event messages.

Note that the nanoseconds value can at some cases be more than 999 999 999. The software using the timestamp in the trailer can handle the situation by subtracting 1 000 000 000 from the nanoseconds value and adding 1 to seconds.

XRS7000 and XRS3000 User Manual, Version 1.3


Five Years Out

6.1.8 Management Trailer

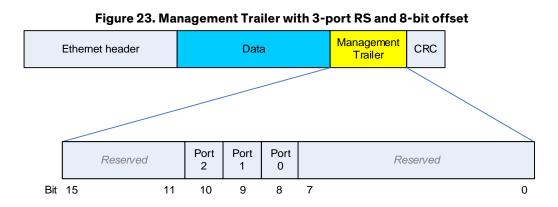
The ports (only port 0 in XRS3003) can be configured to a special mode called management mode. In management mode a port supports the following feature:

• From the management port, it is possible to forward Ethernet frames to any other port independent from other configurations (MAC table, Virtual LAN configuration, Inbound Policy, Disabled ports, and so on).

When in management mode, every frame sent and received to/from the port is equipped with a management trailer. RS adds a management trailer to every frame it sends out of the port and RS expects every frame received by the port to have a management trailer. A management trailer contains information about the input/output port: from which port has the frame been received or to which port(s) it is to be sent. An Ethernet frame containing the management trailer is depicted in Figure 22.

Figure 22. Ethernet Frame with Management Trailer

The length of the Management Trailer is one or two octets depending on the Management Trailer Length setting in GENERAL register (Table 27). For up to eight ports, the length of the management trailer can be 8 bits (one octet, in Figure 22 N=1) or 16 bits (two octets, in Figure 22 N=2). For nine to twelve port RS the length of the management trailer is 16 bits (two octets, in Figure 22 N=2). Every bit in the trailer corresponds to a certain port, starting from port number 0 in the least significant bit. Unused trailer bits are ignored by RS and if RS forwards a frame from a management port to another management port RS does not alter them.


When the host CPU wants to send for example a frame from port number 0 to port number 1 (CPU attached to port 0, port 0 in management mode), it adds a management trailer to the frame with the bit corresponding to port 1 set to one and the other bits in the management trailer set to zero. The host CPU can send a frame to multiple RS ports by setting multiple bits in the management trailer. By setting all management trailer bits (unused bits are ignored) to zero, the host CPU lets RS make the forwarding decision. Note that the host CPU sending to management port has to take care that the frame minimum length requirement of 64 bytes is met also after the Management Trailer is removed by RS.

When RS sends a frame out of a port that is in management mode, RS adds a management trailer to the frame always with one of the Port bits set. The bit corresponds to the port from which the frame was received by RS. When RS forwards a frame from a management port to another management port, it does not alter the unused (reserved) management trailer bits. There is also a special feature called Management Trailer Offset (see GENERAL register in Table 27) which allows different XRS devices to use different bits (8-bit offset) in the trailer (see example in Figure 23). This feature makes it possible to send frames for example from a CPU to certain port of

an XRS device through another XRS device. This can be useful when two XRS devices are used in a QuadBox design.

Usage of management trailer is required for example to be able to support IEEE1588 Ordinary and Boundary clock, Spanning Tree protocols (STP/RSTP), MAC address based authentication protocols, HSR/PRP supervision protocol etc. on attached CPU.

6.1.9 MAC Address Table

Forwarding decisions of RS are typically made by an address search to the MAC Address Table, although Inbound policy, Management trailer or VLAN settings may modify or override this decision.

In XRS3003 there is no MAC Address Table; the device has memory for only one single automatically learned MAC address. There is no MAC address aging either and the user cannot read the stored MAC address.

6.1.9.1 Address Table Entry

The structure of an entry in MAC Address Table is depicted in Figure 24.

Figure 24. MAC	Address Entry
----------------	---------------

U				
s	MAC address (40 hits)	Expiration	Dort (0 hito)	
E	MAC address (48 bits)	Time (7 bits)	Port (8 bits)	Ĺ
D				

The MAC address entry contains a USED bit, the actual MAC Address, Expiration time and a port number. USED bit set to 1 indicates that the entry is currently in use. The port where the frame was received from is stored into the Port field.

The MAC address aging time is set to Expiration time field. There is an internal counter that keeps track of the current time, and when the expiration time is updated a value of current time + address lifetime is written to the Expiration time field. The address lifetime is user configurable in the register map (see Table 27). The Expiration time value is stored in multiples of 16 seconds.

XRS7000 and XRS3000 User Manual, Version 1.3

🗸 **Five Years** Out

6.1.9.2 Address Learning

RS updates the MAC address table automatically according to the source MAC address information in the received Ethernet frames. The Address learning process updates the MAC Address Table when the receive port of the frame is in Forwarding or Learning state (See port state in Table 31). After learning the source MAC address from a frame received from a port that is in Learning state, the frame is dropped by the Forwarding core. If a port is in Disabled state, the MAC Address Table is not updated.

The address learning process for the source address of a received Ethernet frame is depicted in Figure 25.

XRS7000 and XRS3000 User Manual, Version 1.3

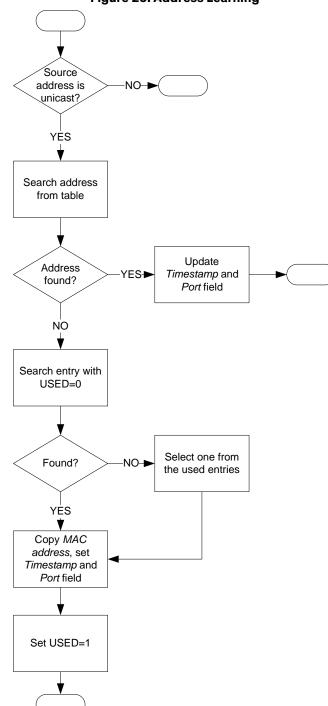
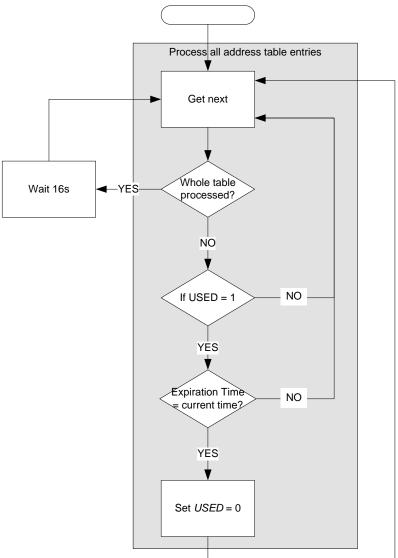


Figure 25. Address Learning

The Address learning process is the following:

- 1. Check that the source address is a unicast Ethernet address.
- 2. Search for the address in the table
- 3. If the address is found, update *Expiration time* and *port* fields with expiration time and source port and exit.
- 4. If the address is not found, search for an address entry with USED bit set to 0.
- 5. If unused entry is not found, select one of the already used entries.

XRS7000 and XRS3000 User Manual, Version 1.3



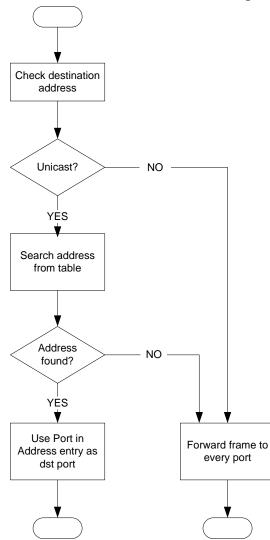
6. Copy MAC address and *Port* fields to the selected entry. Set *Expiration time* to expiration time field and set *USED* bit to 1.

6.1.9.3 Address Aging

Address aging processes for the MAC address table removes entries that are found to be expired. The Address aging process is depicted in Figure 26.

Figure 26. Address Aging

6.1.9.4 MAC Address and Forward Decision


The Address Search process searches MAC addresses from the MAC Address table. Destination MAC address is extracted from every frame received and a search is made to the MAC address table with the address. If the address is found in the MAC Address table, it means that it is known behind which port the destination node is, and the frame can be forwarded to that port. Note that Inbound policy, Management trailer or Virtual LAN settings may still override the forwarding decision made by the MAC Address Table search algorithm.

The MAC Address based forwarding decision is depicted in Figure 27. The whole forwarding decision process is presented in Figure 19.

XRS7000 and XRS3000 User Manual, Version 1.3

Figure 27. MAC Address Search & Forwarding Decision

6.1.10 Virtual LANs (VLANs)

By using VLANs the switch can be divided into two or more virtual switches; frames are not forwarded to ports that are not configured to be members of the same VLAN. VLANs for the ports can be configured using port configuration registers (see Table 31). See Figure 19 on how VLAN configuration affects the forwarding decision.

XRS3003 does not support VLANs; XRS3003 does not use the information in VLAN tags, it forwards VLAN tagged frames like frames without VLAN tag.

6.1.11 Forward Portmask

Forward portmask is another way to control how frames can be forwarded between ports.

Forward portmask configuration is made using port configuration registers (see Table 31). With Forward portmask the user defines to which ports it is possible to forward frames from a port. Note that the forwarding rule can be configured separately for each direction. The Forward portmask can be useful for example in systems where one of the ports is connected to a CPU. Forward portmask can be used to force the forwarding of frames from the other ports only to the CPU port.

See Figure 19 on how Forward portmask affects the forwarding decision.

6.2 Outbound Processing

Outbound processing block transfers frames from forwarding core (buffer memory) to Ethernet medium (refer to Figure 17). Every port has its own individual Outbound processing entity. During transmitting the Outbound processing does the following:

- Timestamp frames
- Modify frames

6.2.1 TX Post-process

The Outbound processing blocks are chained in a row between the Forwarding core and the TX post-process. TX MII controls the rate at which the data flows through the Outbound processing path and the Forwarding core feeds the data at that rate. TX post-process transfers data to TX MII block for sending out to the medium.

6.2.2 TX MII

TX MII block automatically calculates and inserts correct CRC checksums to transmitted frames. Also the preamble and the Start Frame Delimiter (SFD) are automatically inserted. TX MII block indicates the start of the frame to RTC (see Figure 17). The timestamp point of a frame is defined in Figure 18.

6.2.3 Timestamp

The RTC uses the start-of-frame indication from TX MII block to determine the exact value of the transmit time. The transmit time is then given to the PTP overwrite block.

6.2.4 PTP Overwrite

Outbound processing timestamps every Ethernet frame and the difference between the outbound and the inbound time stamps (the time the frame spent inside the switch) is added to the correctionField of PTP event message headers. For Sync messages also the link delay of the ingress port is added to the correctionField. Event messages are recognized already at Inbound processing as specified in Chapter 6.1.7.

XRS7000 and XRS3000 User Manual, Version 1.3

V **Five Years** Out

The time the frame spent inside the switch is calculated by subtracting the RX timestamp of the frame from the TX timestamp. The accuracy of the calculation is 2^-16 nanoseconds.

6.3 Forwarding Core

The Forwarding core is responsible for forwarding frames between ports; that is from the inbound processing path of a port to the outbound processing path of another. The forwarding core is common to all ports. The Forwarding core includes memory management, four transmit priority queues per port and management of the inbound and the outbound processing paths. The Forwarding core also drops frames during high load situations, when running out of buffer memory space.

6.3.1 Memory Controller

Memory controller block (see Figure 15) is responsible for the memory management of the buffer memory used for buffering the frames. The buffer memory is common to all the ports and there is no fixed buffer space reserved per port. Instead, a port is able to buffer more frames when other ports have shorter queues.

The Ethernet frames to be forwarded are stored into the buffer memory in one to three fragments depending on the length of the frame. The size of each fragment is 512 Bytes. This is also the size of the unit in which Memory controller manages the buffer memory. Every output port has enough bandwidth to the buffer memory to achieve wire-speed operation.

Memory controller provides an indication to the Frame Early Drop algorithm (see Chapter 6.3.3) in situations where the buffer memory is so crowded that some of the already stored frames have to be dropped to make space for new ones.

6.3.2 Priority Queues

There are four priority queues for every output interface. When a frame is received, the priority of the frame and the destination port(s) are determined during Inbound processing. When the Inbound processing passes the frame for the Forwarding core, the Forwarding core places the frame into the priority queue(s) that matches its priority. The priority queues are FIFO type and they actually contain only a pointer to the data of the frame (see Figure 28). The data of the frame is not moved, when the pointer moves forward in the queue.

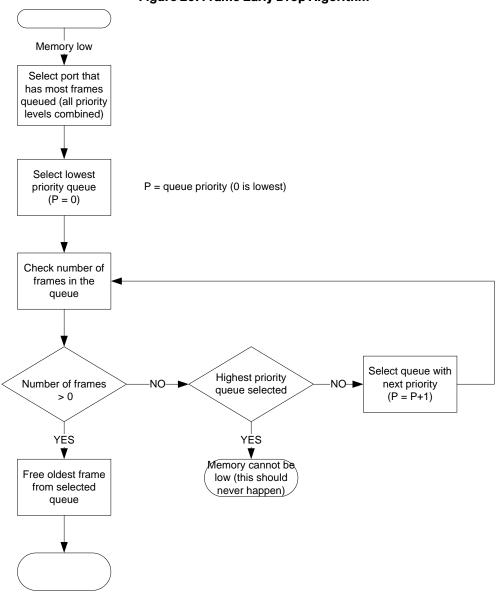

The queues are emptied in priority order so that frames from higher priority queues are sent before any frames from any of the lower priority queues of the port.

All the priority queues have fixed length of 32 frames. If the destination priority queue is full, the frame is dropped. In case of a frame that is forwarded to multiple ports, the frame is dropped only from queue(s) that are full. When a frame is dropped because the priority queue is full, the corresponding error counter is incremented.

XRS7000 and XRS3000 User Manual, Version 1.3

Figure 28. Priority Queues (three ports shown)

6.3.3 Frame Early Drop


Frame Early Drop (FED) algorithm deallocates buffer memory when RS encounters heavy load and buffer memory is about to cease. An indication that the memory is going to be fully used soon is got from Memory controller block.

One reason for using FED algorithm is to ensure that frames buffered for some output ports do not block traffic for the other ports. Buffering too much frames for some ports would in worst case cause all the incoming frames to be dropped. This is because the buffer memory is common to all ports. So the Memory controller block triggers the Frame Early Drop algorithm early and frequently enough to ensure that there will always be enough buffer memory to be able to receive all the incoming frames.

The FED algorithm used also guarantees that lower priority frames for a port are dropped before higher priority ones for the port. Another effect is that when buffer memory consumption is high, frames are dropped early enough to slow down TCP connections (selective dropping for oldest frames) to prevent total congestion.

Figure 29. Frame Early Drop Algorithm

The Frame Early Drop algorithm is presented in Figure 29. The algorithm is run when buffer memory resources are running low. The algorithm selects one frame to be dropped and drops it.

The Frame Early Drop algorithm selects first the output port that has the most frames queued. Then it selects the lowest priority queue of that port that has queued frames it, and removes the oldest frame from that queue. After dropping the frame, the corresponding error counter is incremented.

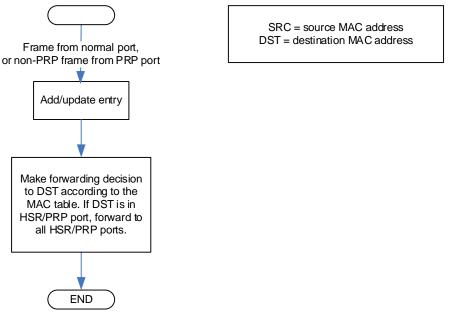
6.4 HSR (High-availability Seamless Redundancy)

HSR specific features of RS include:

- Automatic insertion of HSR tag
- Automatic removal of HSR tag
- Automatic duplicate generation for HSR ports

XRS7000 and XRS3000 User Manual, Version 1.3

• Automatic duplicate detection and removal for HSR ports

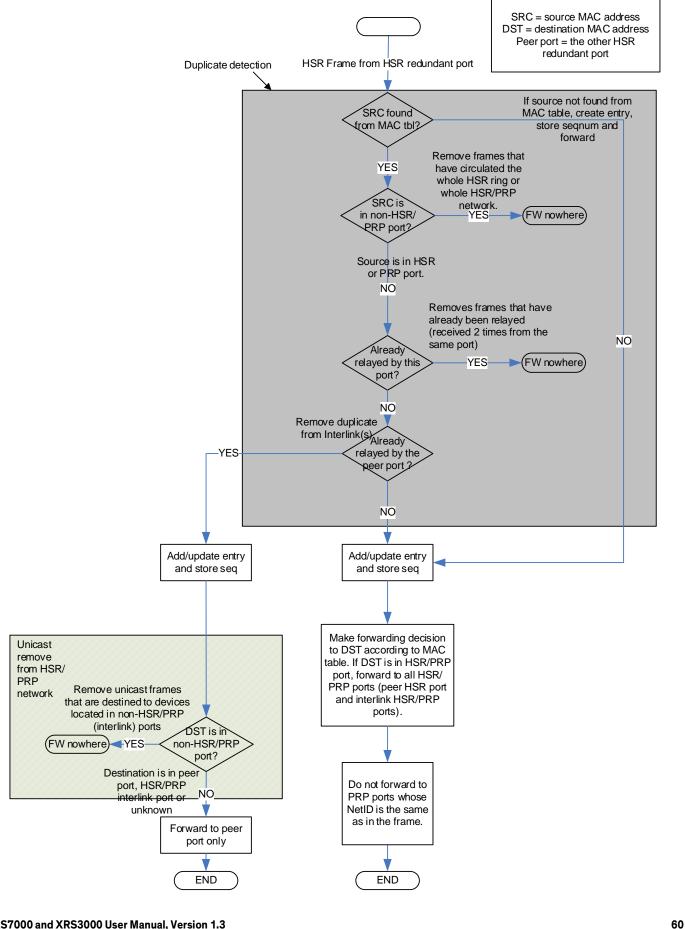

At input the HSR tag is always removed if the port is in HSR mode. At output a HSR tag is added if the output port is in HSR mode.

The HSR mode for a port and the other HSR specific setting are configured using HSR/PRP registers (see Table 32).

6.4.1 Forwarding of HSR Frames

When forwarding frames in HSR-enabled switch there are basically two different cases: the frame is either coming in from a HSR redundant port (typically ring port) or it is coming in from an interlink port. The interlink port can be either in HSR, PRP or normal (non-HSR, non-PRP) mode.

If a frame comes in from a normal (non-HSR, non-PRP) interlink port it is forwarded as presented in Chapter 6.1.4, but when it is to be forwarded to HSR-redundant port the frame is duplicated and sent out from the both redundant ports (see Figure 30).


Figure 30. Frame from normal port (or non-PRP frame from PRP port)

The forwarding logic for frames coming in from a redundant port is more complicated, because of duplicate detection and removal. The forwarding logic for frames coming in from an HSR redundant port is presented in Figure 31.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

For HSR frames received from a HSR port, it is first checked if the source MAC address exists in the MAC address table and if the source node is located in non-HSR/PRP port. The duplicate detection is then done by first looking at the stored HSR sequence numbers for the other HSR redundant port: if one matches with the incoming frame's HSR Tag's sequence number, we have a duplicate. Additionally, it is checked whether a frame with this same sequence number and source MAC address, that in from this same port has already been forwarded, in which case the frame is circulating in the ring/network and has to be deleted. If the frame is neither duplicate nor circulating, it is forwarded towards its destination(s).

Multicast and broadcast frames always circulate the whole ring. The duplicate detection for multicast and broadcast frames is made in two phases: by first looking if the frame has already been forwarded into this direction. If the answer is yes, the frame already circulated the whole ring and it is dropped (note that checking whether the source address is behind a non-HSR port probably drops the frame earlier). The next step is to see whether the frame was already received from the other redundant port and has therefore already been forwarded to the interlink ports. If not, the frame is forwarded to all the other ports (except the input port). Otherwise the frame is forwarded only to the other redundant port.

6.4.2 HSR Port Modes

HSR standard defines one mandatory operation mode and four optional modes. The default mode is called mode H, which is normal HSR tagged forwarding.

In the optional mode N, traffic is not forwarded between HSR redundant ports. The mode N can be configured using PORT_FWD_MASK register (see Table 31) by disabling forwarding between HSR redundant ports.

The configuration procedure is the following:

- 1. Disable both redundant ports (Table 31, PORT_STATE register)
- 2. Change mode (Table 32, HSR_CFG register) for both redundant ports
- 3. Configure PORT_FWD_MASK (Table 31, PORT_FWD_MASK register)
- 4. Enable both configured ports (Table 31, PORT_STATE register)

XRS7000 and XRS3000 User Manual, Version 1.3

6.5 PRP (Parallel Redundancy Protocol)

PRP specific features of RS include:

- Automatic insertion of PRP trailer
- Automatic removal of PRP trailer
- Automatic duplicate generation for PRP ports
- Automatic duplicate detection and removal for PRP ports

During inbound processing the PRP trailer is removed if the port is in PRP mode and if the frame has one. In output a PRP trailer is added if the output port is in PRP mode. Frames coming in from a PRP enabled port that do not have a PRP trailer are accepted, because they can be from a SAN (Singly Attached Node) that does not support PRP.

The PRP mode for a port and the other PRP specific settings are configured using HSR/PRP registers (see Table 32). Also PORT_FWD_MASK must be configured to prevent forwarding between PRP redundant ports.

The configuration procedure is the following:

- 1. Disable both redundant ports (Table 31, PORT_STATE register)
- 2. Change mode (Table 32, HSR_CFG register) for both redundant ports
- 3. Configure PORT_FWD_MASK to prevent forwarding between PRP ports (Table 31, PORT_FWD_MASK register)
- 4. Enable both configured ports (Table 31, PORT_STATE register)

6.5.1 Forwarding of PRP Frames

When a frame comes in from a normal (non-PRP, non-HSR) interlink port it is forwarded as presented in Chapter 6.1.4, but if it is to be forwarded to a PRP redundant port, the frame is duplicated and sent out of the both PRP redundant ports.

The forwarding logic for frames coming in from a PRP redundant port is more complicated, because of duplicate detection and removal. The forwarding logic for PRP frames coming in from a PRP redundant port is presented in Figure 32.

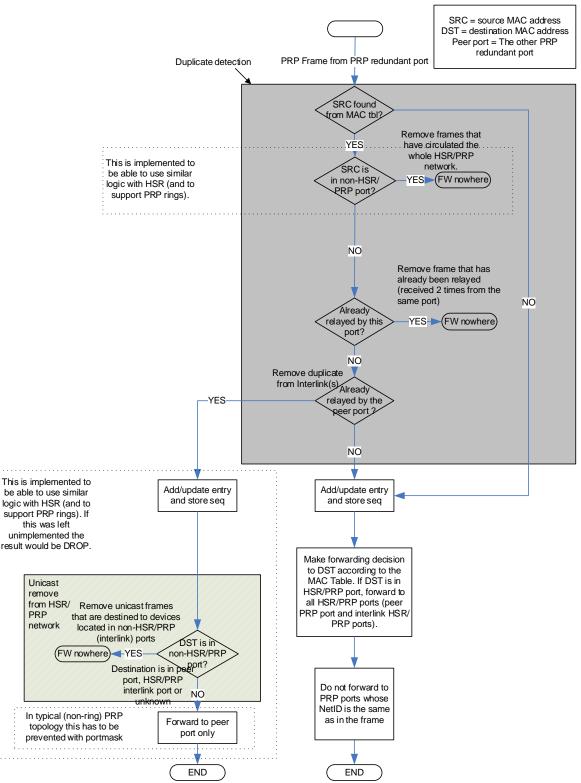


Figure 32. PRP Redundant Port Forwarding Logic

For PRP frames received from a PRP port, it is first checked if the source MAC address exists in the MAC address table. The duplicate detection is then done by looking at the stored PRP sequence numbers for the other PRP port:

XRS7000 and XRS3000 User Manual, Version 1.3

if one matches with the incoming frame's PRP trailer's sequence number, we have a duplicate. Additionally, it is checked whether a frame with this same sequence number and source MAC address, coming in from this same port has already been forwarded. If the frame is not duplicate it is forwarded towards its destination(s).

6.6 HSR/PRP interoperability

In PRP frame Lanld identifies into which LAN (LAN_A, LAN_B) the PRP frame is sent. In HSR frame Lanld identifies from which PRP LAN (LAN_A, LAN_B) the frame came into the HSR Network. In addition to Lanld, in HSR there is NetId identifying the PRP network where from the frame originated. The idea of NetId is that the frame is not forwarded from the HSR network back to the PRP network it came originally from. The definitions of the different identifiers used in HSR and PRP can be found in Table 23. Table 24 presents how the identifier fields are handled in RS.

Term	HSR	PRP
Lanld	Lowest bit of the PathId. Identifies	4-bit field in PRP tag identifying the LAN.
	whether connected to PRP LAN A or	Either A (1010) or B (1011).
	LAN B.	
NetId	3-bit identification number for attached	-
	PRP network. 3 highest bits of Pathld.	
ring NetId	NetId for the frames originated from	-
	the RedBox itself.	
PathId	4-bit field in HSR header. NetId +	-
	Lanld.	

Table 23. Definition of LanID, NetId, ring NetId and PathId

Table 24. Resulting LanId and NetId

Input port	Output port	Affect to the	Resulting LanID in the	Resulting NetID in
mode	mode	Forwarding Decision	frame	the frame
normal	normal	-	-	-
normal	HSR	-	Lanld configured for the	NetID configured for
			input port.	the input port.
normal	PRP	-	OxA or OxB, according to	-
			Lanld bit configured for	
			the output port.	
HSR	normal	-	-	-
HSR	HSR	-	unchanged	unchanged
HSR	PRP	if NetID of the frame	OxA or OxB, according to	-
		matches the NetID of	Lanld bit configured for	
		the output port, drop	the output port.	
		the frame.		
PRP	normal	-	-	-

XRS7000 and XRS3000 User Manual, Version 1.3

Input port mode	Output port mode	Affect to the Forwarding Decision	Resulting LanID in the frame	Resulting NetID in the frame
PRP	HSR	-	Lanld configured for the input port.	NetID configured for the input port.
PRP	PRP	-	OxA or OxB, according to LanId bit configured for the output port.	-

6.7 Allowed Port Modes

Not every port of XRS is allowed to be configured in every mode, Table 25 lists the allowed modes for each port.

			Table 23.7	Allowed Port Mo	ues		
Device	Port	non-HSR,	HSR	PRP	HSR	PRP	Management
		non-PRP	Redundant	Redundant	Interlink	Interlink	
XRS7004	0	Yes	-	-	-	-	Yes
	1	Yes	Yes	Yes	-	-	Yes
	2	Yes	Yes	Yes	-	-	Yes
	3	Yes	-	-	Yes	Yes	Yes
XRS7003	0	Yes	-	-	-	-	Yes
	1	Yes	Yes	Yes	-	-	Yes
	2	Yes	Yes	Yes	-	-	Yes
XRS3003	0	Yes	-	-	-	-	Yes
	1	Yes	Yes	Yes	-	-	-
	2	Yes	Yes	Yes	-	-	-

Table 25. Allowed Port Modes

6.8 Software Reset

Software reset is made by writing value 1 to the Software reset bit (see Table 27) in General Register. After reset command RS cancels all of its current operations and waits until all of its state machines have returned to their reset states. After the reset has completed, RS clears the Software reset bit in the register. After software reset RS is in the same state as after hardware reset.

6.9 Switch Configuration Registers

Table 26 presents the switch configuration register groups. These registers configure the operation of the switch core.

Address	Acronym	Register group description	Section	Table
Offset				
0x0000	SWITCH	General switch configuration	0	Table 27
		registers		
0x2000	TS	Frame Timestamp registers	6.9.2	Table 28
0x4000	VLAN	Virtual LAN Configuration	6.9.3	Table 29
		Registers (not in XRS3003)		

Table 26. Switch Configuration Register Groups

6.9.1 General Switch Configuration Registers

The General switch configuration registers are presented in Table 27.

Address	Register	Descrip	tion		
SWITCH+ 0x0000 SWITCH+ 0x000E	Reserved	Reserved	1		
SWITCH+	GENERAL	Reset: 0	x 00 00		
0x0010			control bit	s for RS.	
		Bits	1-0:	RO	Reserved
		Bits	3-2:	R/W	Management Trailer Length Defines the length of the management trailer for ports that are in management mode. 0 = 8 bits 1 = 16 bits (reserved in XRS3003) 2 = reserved
					3 = reserved
		Bits	5-4:	R/W	Management Trailer Offset 0 = normal operation 1 = 8 bit offset. This causes bit 8 in the management trailer to relate to port 0 (instead of port 8), bit 9 to relate to port 1 (instead of port 9), and so on. Bits 0 to 7 in the trailer are ignored. This feature is useful (only) when two XRS devices are connected to each other using interfaces that are in management mode, as it makes different XRS devices to use different bits in the trailer. Use only when Management Trailer Length is configured to 16 bits. 2 = reserved
		Bit	6:	RO	3 = reserved Reserved
		Dit	0.		

Table 27. General Switch Configuration Registers
--

Address	Register	Description			
		Bit	7:	R/W	Disable support for independent VLANs
					0 = Support for independent VLANs
					enabled. If destination MAC is registered
					to a port where to forwarding is not
					allowed, the frame is forwarded to all
					ports where allowed. Do not use this
					mode when HSR/PRP is enabled.
					1 = Support for independent VLANs
					disabled. Frame is dropped when
					destination MAC is registered to a port
					where to forwarding is not allowed.
					See also forwarding decision in Figure
					19.
		Bit	8:	RO	Reserved
		Bit	9:	R/W	Time Trailer
					When enabled, Time Trailer (Chapter
					4.1.7.3.3) is added to PTP event message
					frames at outbound of port 0.
					0 = disabled
					1 = enabled
					It is not allowed to enable Time Trailer
					and HSR/PRP mode (HSR_CFG register)
					for port 0 at the same time.
		Bit	10:	R/W	Modify Sync frames
					When enabled, originTimestamp field in
					the Sync messages in port 0 inbound are
					modified to contain the receive time of
					the frame.
					0 = disabled
					1 = enabled
		Bits	12-	R/W	PTP Mode
			11:		00 = PTP over UDP/IPv4 (reserved in
					XRS3003)
					01 = reserved
					10 = PTP over Ethernet
					11 = reserved

Address	Register	Description					
		Bit	13:	R/W	Cut-Through Enables Cut-Through operation between HSR redundant ports. Cut-through operation is possible only between port 1 (RGMII1) and port 2 (RGMII2). When enabling Cut-Through, the ports 1 and 2 must be configured to HSR redundant mode, they must not be in management mode and port 3 cannot be configured as HSR/PRP interlink port. 0 = Store-and-Forward operation 1 = Cut-Through operation To prevent broken frames from looping indefinitely, this bit self-clears in case of a receive error (RX_UNDERSIZE, RX_FRAGMENTS, RX_OVERSIZE, RX_JABBER, RX_ERR or RX_CRC).		
		Bit	14:	R/SC	Clear MAC address table Writing 1 to this bit clears entries from the MAC address table. The value in register MT_CLEAR_MASK defines which entries are cleared. RS clears this bit when done. This bit is reserved in XRS3003.		
		Bit	15:	R/SC	Software reset Writing 1 to this bit starts a software reset. RS clears the bit when reset is completed.		
SWITCH+	MT_CLEAR_MASK	Reset: 2^(•		
0x0012		 MAC Table Clear Mask Defines which entries are cleared from the MAC address table when MAC address table clear command is given (bit 14 in GENERAL register) The reset value is such that all the entries in the table are cleared If entries of a HSR port (redundant or HSR-interlink) are cleared, entries of all the HSR ports must be cleared at the same time If entries of a PRP port are cleared, entries of all the PRP ports must be cleared at the same time. There is no need for clearing entries of HSR/PRP ports if one of the HSR/PRP ports goes down. Clearing the entries may cause frames loss or duplicates. This register is reserved in XRS3003. 					

Address	Register	Description					
		Bits	15-0:	R/W	MAC Table Clear Mask.		
					Bit 0 corresponds to port 0, bit 1		
					corresponds to port 1, and so on.		
					0 = Entries registered to this port are not		
					cleared or the port does not exist		
					1 = Entries registered to this port are		
					cleared		
SWITCH+	Reserved	Reserv	ed				
0x0014							
SWITCH+							
0x001E							
SWITCH+	ADDRESS_AGING	Reset: 0 x 00 12					
0x0020		Configuration register for address aging functionality of the MAC					
		Addres	s table.				
		Bits	6-0:	R/W	Address LifeTime		
					Lifetime of automatically learned		
					addresses. 0=16s, 1=32s, 2=48s,,		
					127=2048s		
					This setting defines also the		
					ProxyNodeTableForgetTime for HSR/PRP.		
		Bit	7:	RO	Reserved		
		Bits	10-8:	R/W	EntryForgetTime		
					Timer value for HSR/PRP duplicate discard		
					algorithm, see HSR/PRP specification [7].		
					0=10ms, 1=20ms, 2=40ms, 3=80ms,		
					4=160ms, 5=320ms, 6=640ms,		
					7=1280ms.		
		Bits	15-	RO	Reserved		
			11:				
SWITCH+	Reserved	Reserv	ed				
0x0022							
SWITCH+							
0x0026							

Address	Register	Descri	Description				
SWITCH+	TS_CTRL_TX	Reset: 0 x 00 00					
0x0028		Timestamper Control, Transmit Side					
		Bit	0:	R/SC	Transfer TXTS0		
					User sets this bit to allow RS to store		
					information of a PTP Event message to		
					registers TX_TS_0_NS_LO,		
					TX_TS_0_NS_HI, TX_TS_0_S_LO,		
					TX_TS_0_S_HI and		
					TX_TS_0_HDR_029. RS clears this bit		
					after writing the information to the		
					registers.		
		Bit	1:	R/SC	Transfer TXTS1		
		Bit	2:	R/SC	Transfer TXTS2		
		Bit	3:	R/SC	Transfer TXTS3		
		Bits	15-4:	RO	Reserved		
SWITCH+	TS_CTRL_RX	Reset: 0 x 00 00					
0x002A		Timestamper Control, Receive Side					
		Bit	0:	R/SC	Transfer RXTS0		
					User sets this bit to allow RS to store		
					information of a PTP Event message to		
					registers RX_TS_0_NS_LO,		
					RX_TS_0_NS_HI, RX_TS_0_S_LO,		
					RX_TS_0_S_HI and		
					RX_TS_0_HDR_029. RS clears this bit		
					after writing the information to the		
					registers.		
		Bit	1:	R/SC	Transfer RXTS1		
		Bit	2:	R/SC	Transfer RXTS2		
		Bit	3:	R/SC	Transfer RXTS3		
		Bits	15-4:	RO	Reserved		

Address	Register	Descr	Description					
SWITCH+	INT_MASK	Reset:	Reset: 0 x 00 00					
0x002C		Interru	Interrupt mask. An external interrupt is activated when at least one of the					
		followi	following Interrupt Mask bits is set and the corresponding Interrupt					
		Status	Status bit is 1.					
		Bit	0:	R/W	TX Timestamp			
					Indicates that information of a PTP event			
					message has been written to TX timestamp			
					registers.			
		Bit	1:	R/W	RX Timestamp			
					Indicates that information of a PTP event			
					message has been written to RX timestamp			
					registers.			
		Bit	2:	R/W	RX Error			
					Indicates that an RX error has happened			
					and that the corresponding counter has			
					been incremented. The number of			
					erroneous frames can be read from counter			
					registers RX_UNDERSIZE,			
					RX_FRAGMENTS, RX_OVERSIZE,			
					RX_JABBER, RX_ERR and RX_CRC (see			
					Table 35). RX_WRONGLAN does not cause			
					an interrupt.			
		Bit	3:	R/W	Congested			
					Indicates that at least one frame was			
					dropped due to congestion. Number of			
					frames dropped can be read from registers			
					PRIQ_DROP and EARLY_DROP.			
		Bits	15-4:	RO	Reserved			

Address	Register	Descr	Description			
SWITCH+	INT_STATUS	Reset:	Reset: 0 x 00 00			
0x002E		Interru	pt Status.	An exter	nal interrupt is activated when at least one of	
		the fol	owing Inte	errupt St	atus -bits is set and the corresponding Interrupt	
		Maskb	oit is 1.The	interrup	t status bit in this register is updated	
		indepe	ndent froi	m the co	rresponding Interrupt Mask bit.	
		Bit	0:	R/C	TX Timestamp	
					Indicates that information of a PTP event	
					message has been written to TX timestamp	
					registers.	
		Bit	1:	R/C	RX Timestamp	
					Indicates that information of a PTP event	
					message has been written to RX timestamp	
					registers.	
		Bit	2:	R/C	RX Error	
					Indicates that an RX error has happened	
					and that the corresponding counter has	
					been incremented. The number of	
					erroneous frames can be read from counter	
					registers RX_UNDERSIZE,	
					RX_FRAGMENTS, RX_OVERSIZE,	
					RX_JABBER, RX_ERR and RX_CRC (see	
					Table 35) RX_WRONGLAN does not cause	
					an interrupt.	
		Bit	3:	R/C	Congested	
					Indicates that at least one frame was	
					dropped due to congestion. Number of	
					frames dropped can be read from registers	
					PRIQ_DROP and EARLY_DROP	
		Bits	15-4:	RO	Reserved	
SWITCH+	Reserved	Reserv	red	1		
0x0030						
SWITCH+						
0x01FE						

Address	Register	Descri	ption						
SWITCH+	MAC_TABLE0	Reset: (0 x 00 00						
0x0200		MAC Ta	MAC Table Read 0. In XRS3003 this register is reserved.						
			3-0:	RO	Port Number				
					The port where to the address is registered.				
				RO	Reserved				
		Bit	15:	R/SC	Transfer				
					Write 1 to this bit to enable fetching of the				
					next MAC address entry to registers				
					MAC_TABLE0 MAC_TABLE3. Value 0				
					indicates that the fetch is completed. The				
					first entry fetched is the first entry in the				
					table. Fetched MAC address value				
					FF:FF:FF:FF:FF:FF indicates that the latest				
					entry fetched was the last entry in the table				
					and that the next entry to be fetched is the				
					first entry in the table.				
SWITCH+	MAC_TABLE1	ABLE1 Reset: 0 x FF FF							
0x0202		MAC Table Read 1. The first two bytes of the MAC address. MAC address value FF:FF:FF:FF:FF:FF indicates the end of the table. In XRS3003 th							
		register	r is reserv	ed.					
		Bits	7-0:	RO	1st octet (<u>XX</u> :XX:XX:XX:XX)				
		Bits	15-8:	RO	2nd octet (XX: <u>XX</u> :XX:XX:XX)				
SWITCH+	MAC_TABLE2	Reset: (O x FF FF						
0x0204					o bytes in the middle of the MAC address. MAC				
					:FF:FF indicates the end of the table. In				
		XRS30	1	gister is re					
		Bits	7-0:	RO	3rd octet (XX:XX: <u>XX</u> :XX:XX:XX)				
		Bits	15-8:	RO	4th octet (XX:XX:XX: <u>XX</u> :XX:XX)				
SWITCH+	MAC_TABLE3	Reset: (Reset: 0 x FF FF						
0x0206			MAC Table Read 3. The last two bytes of the MAC address. MAC address						
					dicates the end of the table. In XRS3003 this				
		-	r is reserv	1					
		Bits	7-0:	RO	5th octet (XX:XX:XX:XX: <u>XX</u> :XX)				
		Bits	15-8:	RO	6th octet (XX:XX:XX:XX:XX:XX)				

6.9.2 Frame Timestamp Registers

The Frame Timestamp registers are presented in Table 28. There are four sets of registers for TX and four sets of registers for RX into which information of four PTP event messages at a time can be stored. RS uses the register sets (consisting of registers TX_TS_X_NS_LO, TX_TS_X_NS_HI, TX_TS_X_S_LO, TX_TS_X_S_HI, TX_TS_X_HDR 0... TX_TS_X_HDR 29) in ascending order 0,1,2,3,0,1,2,3,0,1,2,3... The user has to set the

XRS7000 and XRS3000 User Manual, Version 1.3

corresponding Transfer bit in the Control register (TS_CTRL_TX, TS_CTRL_RX, see Table 28) to 1 before RS is able to use the register set. After filling the information to the register set, RS clears the Transfer bit. If the Transfer bit corresponding to the register set that RS is going to use next is not set, the timestamp information of the next event message is lost (the frame itself is forwarded normally).

Timestamps of PTP messages are stored only for port 0.

		Table 28	3. Frame T i	mestam	p Registers		
Address	Register	Descri	Description				
TS+	TX_TS_0_NS_LO	Reset: (Reset: 0 x 00 00				
0x0000		Transm	it TimeSta	amp 0 Na	anoseconds low.		
		Bits	15-0:	RO	Nanoseconds, bits 15:0		
					Nanoseconds of the timestamp of the frame		
					(lowest bits).		
TS+	TX_TS_0_NS_HI	Reset: 0 x 00 00					
0x0002		Transm	it TimeSta	amp 0 Na	anoseconds high.		
		Bits	13-0:	RO	Nanoseconds, bits 29:16		
					Nanoseconds of the timestamp of the frame		
					(highest bits). The nanoseconds value can at		
					some cases be more than 999 999 999.		
					The software using the timestamp can		
					handle the situation by subtracting 1 000		
					000 000 from the nanoseconds value and		
					adding 1 to seconds.		
		Bits	15-14:	RO	Reserved		
TS+	TX_TS_0_S_LO	Reset: (00 00 x 0				
0x0004		Transm	it TimeSta	amp 0 Se	conds low.		
		Bits	15-0:	RO	Seconds, bits 15:0		
					Seconds of the timestamp of the frame		
					(lowest bits).		
TS+	TX_TS_0_S_HI	Reset: (00 00 x 0	1			
0x0006		Transmit TimeStamp 0 Seconds high.					
		Bits	15-0:	RO	Seconds, bits 31:16		
					Seconds of the timestamp of the frame (the		
					next lowest bits).		
TS+	Reserved	Reserve	ed	1	1		
0x0008							
TS+							
0x000C							

Address	Register	Description				
TS+	TX_TS_0_HDR 0		Reset: 0 x 00 00			
0x000E	17_13_0_1101(0			mn O Me	ssage Header 0.	
OXOOOL		Bits	15-0:	RO	PTP Message bytes 1:0	
		Dits	10 0.		First two bytes of the PTP message header.	
TS+	TX_TS_0_HDR 1	Reset. () x 00 00		Thist two bytes of the FTT message header.	
0x0010				mn 0 Me	ssage Header 1.	
0,0010		Bits	15-0:	RO	PTP Message bytes 3:2	
		Dito	10 0.		Bytes 3:2 of the PTP message header.	
TS+	TX_TS_0_HDR 2	Reset: () x 00 00			
0x0012	IN_10_0_11D1(2			mn 0 Me	ssage Header 2.	
0,0012		Bits	15-0:	RO	PTP Message bytes 5:4	
		Dito			Bytes 5:4 of the PTP message header.	
TS+	TX_TS_0_HDR N	Reset: (0 x 00 00			
0x0014				amp 0 Me	ssage Header N.	
TS+		Bits	15-0:	RO	PTP Message bytes ((N*2)+1):(N*2)	
0x0046						
TS+	TX_TS_0_HDR 29	Reset: 0 x 00 00				
0x0048		Transmit TimeStamp 0 Message Header 29.				
		Bits	15-0:	RO	PTP Message bytes 59:58	
					Bytes 59:58 of the PTP message header.	
TS+	Reserved	Reserve	ed	I		
0x004A						
TS+						
0x007E						
TS+	TX_TS_1_NS_LO	Reset: (0 x 00 00			
0x0080		Transm	it TimeSta	amp 1 Na	noseconds low.	
		Bits	15-0:	RO	Nanoseconds, bits 15:0	
					Nanoseconds of the timestamp of the frame	
					(lowest bits).	
TS+	TX_TS_1_NS_HI	Reset: (0 x 00 00			
0x0082		Transmit TimeStamp 1 Nanoseconds high.				
		Bits	13-0:	RO	Nanoseconds, bits 29:16	
					Nanoseconds of the timestamp of the frame	
					(highest bits). The nanoseconds value can at	
					some cases be more than 999 999 999.	
					The software using the timestamp can	
					handle the situation by subtracting 1 000	
					000 000 from the nanoseconds value and	
					adding 1 to seconds.	
		Bits	15-14:	RO	Reserved	

Address	Register	Description					
TS+	TX_TS_1_S_LO		0 x 00 00				
0x0084				amp 1 Sec	conds low.		
		Bits	15-0:	RO	Seconds, bits 15:0		
					Seconds of the timestamp of the frame		
					(lowest bits).		
TS+	TX_TS_1_S_HI	Reset: (0 x 00 00				
0x0086		Transm	it TimeSta	amp 1 Sec	conds high.		
		Bits	15-0:	RO	Seconds, bits 31:16		
					Seconds of the timestamp of the frame (the		
					next lowest bits).		
TS+	Reserved	Reserve	ed		· · · · · · · · · · · · · · · · · · ·		
0x0088							
TS+							
0x008C							
TS+	TX_TS_1_HDR0	Reset: (0 x 00 00				
0x008E		Transm	it TimeSta	amp 1 Me	ssage Header 0.		
		Bits	15-0:	RO	PTP Message bytes 1:0		
					First two bytes of the PTP message header.		
TS+	TX_TS_1_HDR 1	Reset: 0 x 00 00					
0x0090		Transmit TimeStamp 1 Message Header 1.					
		Bits	15-0:	RO	PTP Message bytes 3:2		
					Bytes 3:2 of the PTP message header.		
TS+	TX_TS_1_HDR 2	Reset: 0 x 00 00					
0x0092		Transm	it TimeSta	amp 1 Me	ssage Header 2.		
		Bits 15-0: RO PTP Message bytes 5:4					
					Bytes 5:4 of the PTP message header.		
TS+	TX_TS_1_HDR N	Reset: 0 x 00 00					
0x0094		Transm	it TimeSta	amp 1 Me	ssage Header N.		
TS+		Bits	15-0:	RO	PTP Message bytes ((N*2)+1):(N*2)		
0x00C6			I	1	1		
TS+	TX_TS_1_HDR 29	Reset: 0 x 00 00					
0x00C8		Transmit TimeStamp 0 Message Header 29.					
		Bits 15-0: RO PTP Message bytes 59:58					
					Bytes 59:58 of the PTP message header.		
TS+	TX_TS_3_NS_LO	Transm	it TimeSta	amp 3 Nai	noseconds low. See TX_TS_1_NS_LO		
0x0180							
TS+	TX_TS_3_NS_HI	Transm	it TimeSta	amp 3 Nai	noseconds high. See TX_TS_1_NS_HI		
0x0182							
TS+	TX_TS_3_S_LO	Transm	it TimeSta	amp 3 Sec	conds low. See TX_TS_1_S_LO		
0x0184							

Address	Register	Description
TS+	TX TS 3 S HI	Transmit TimeStamp 3 Seconds high. See TX_TS_1_S_HI
0x0186		
TS+	Reserved	Reserved
0x0188		
TS+		
0x018C		
TS+	TX_TS_3_HDR0	Transmit TimeStamp 3 Message Header 0. See TX_TS_1_HDR 0
0x018E		
TS+	TX_TS_3_HDR 1	Transmit TimeStamp 3 Message Header 1. See TX_TS_1_HDR 1
0x0190		
TS+	TX_TS_3_HDR 2	Transmit TimeStamp 3 Message Header 2. See TX_TS_1_HDR 2
0x0192		
TS+	TX_TS_3_HDR N	Transmit TimeStamp 3 Message Header N. See TX_TS_1_HDR N
0x0194		
TS+		
0x01C6		
TS+	TX_TS_3_HDR	Transmit TimeStamp 3 Message Header 29. See TX_TS_1_HDR 29
0x01C8	29	
TS+	Reserved	Reserved
0x01CA		
TS+		
0x01FE		
TS+	RX	Receive TimeStamp 0 Nanoseconds Iow. See TX_TS_1_NS_LO
0x0200	_TS_0_NS_LO	
TS+	RX_TS_0_NS_HI	Receive TimeStamp 0 Nanoseconds high. See TX_TS_1_NS_HI
0x0202		
TS+	RX_TS_0_S_LO	Receive TimeStamp 0 Seconds low. See TX_TS_1_S_L0
0x0204		
TS+	RX_TS_0_S_HI	Receive TimeStamp 0 Seconds high. See TX_TS_1_S_HI
0x0206		
TS+	Reserved	Reserved
0x0208		
TS+		
0x020C		
TS+	RX_TS_0_HDR0	Receive TimeStamp 0 Message Header 0. See TX_TS_1_HDR 0
0x020E		
TS+	RX_TS_0_HDR 1	Receive TimeStamp 0 Message Header 1. See TX_TS_1_HDR 1
0x0210		
TS+	RX_TS_0_HDR 2	Receive TimeStamp 0 Message Header 2. See TX_TS_1_HDR 2
0x0212		

TS+ RX_TS_0_HDR N Receive TimeStamp 0 Message Header N. See TX_TS_1_HDR N 0x0246 RX_TS_0_HDR Receive TimeStamp 0 Message Header 29. See TX_TS_1_HDR 29 0x0248 29 Reserved TS+ Reserved Reserved 0x027E Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_L0 TS+ RX Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_L0 0x0280 _TS_1_NS_L0 Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI 0x0282 RX_TS_1_NS_HI Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI 0x0284 RX_TS_1_S_LO Receive TimeStamp 1 Seconds high. See TX_TS_1_S_LO 0x0284 RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0284 RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0288 RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0288 RX_TS_1_HDR 0 Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 1 0x0280 RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0280 RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0290 RX RX_TS_1_HDR 1 Receive TimeStamp	Address	Register	Description
TS+ 0x0246RX_TS_0_HDR 29Receive TimeStamp 0 Message Header 29. See TX_TS_1_HDR 29 0x0248 29TS+ 0x024AReservedReservedTS+ 0x027EReservedReservedTS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LO 0x0280TS+ 0x0280_TS_1_NS_LOTS+ 0x0280_RX_TS_1_NS_HI Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI 0x0280TS+ 0x0284RX_TS_1_S_LOTS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LO 0x0286TS+ 0x0286RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0286TS+ 0x0286RX_TS_1_HDR 0 Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0286TS+ 0x0286ReservedTS+ 0x0286Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 0x0286TS+ 0x0290RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0290TS+ 0x0290RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0292TS+ 0x0292RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294TS+ 0x0226RX_TS_1_HDR R Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N 0x0294TS+ 0x0226RX_TS_1_HDR R Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N 0x0294	TS+	RX_TS_0_HDR N	Receive TimeStamp 0 Message Header N. See TX_TS_1_HDR N
0x0246RX_TS_0_HDR 29Receive TimeStamp 0 Message Header 29. See TX_TS_1_HDR 29 0 Mossage Header 29. See TX_TS_1_HDR 29 29TS+ 0x024A TS+ 0x027EReservedReservedTS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LO 0x0280TS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HITS+ 0x0282RX_TS_1_S_LOReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LO 0x0284TS+ 0x0286RX_TS_1_S_HI Receive TimeStamp 1 Seconds low. See TX_TS_1_S_HI 0x0286TS+ 0x0288Reserved ReservedTS+ 0x0288Reserved Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 0x0286TS+ 0x0280RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0290TS+ 0x0292RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0294TS+ 0x0292RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0294TS+ 0x0294RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 1 0x0294TS+ 0x0266RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0294TS+ 0x0204RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0294TS+ 0x0204RX_TS_1_HDR 2 29	0x0214		
TS+ 0x0248RX_TS_0_HDR 29Receive TimeStamp 0 Message Header 29. See TX_TS_1_HDR 29 0x0244TS+ 0x027EReservedReservedTS+ 0x027EReceive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LO 0x0280_TS_1_NS_LOTS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_HI 0x0282TS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_S_LO 0x0284TS+ 0x0286RX_TS_1_S_LOReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LO 0x0286TS+ 0x0286RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI 0x0286TS+ 0x0286ReservedTS+ 0x0286ReservedTS+ 0x0286Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 0x0286TS+ 0x0290RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0290TS+ 0x0290RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1 0x0290TS+ 0x0292RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294TS+ 0x0206RX_TS_1_HDR R Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294TS+ 0x0206RX_TS_1_HDR R Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N 0x0294	TS+		
0x0248 29 TS+ Reserved 0x024A TS+ 0x027E Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LO 0x0280 _TS_1_NS_LO TS+ RX Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_HI 0x0282	0x0246		
TS+ 0x024A TS+ 0x027EReservedReservedTS+ 0x027ERX TS_1_NS_LOReceive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LOTS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HITS+ 0x0282RX_TS_1_S_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HITS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_S_LOTS+ 0x0284RX_TS_1_S_HIReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LOTS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+ 0x0280RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0294 TS+ 0x0226RX_TS_1_HDR 1Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+ 0x0206RX_TS_1_HDR 2Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 1TS+ 0x0206RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0206RX_TS_1_HDR 3Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+ 0x0206RX_TS_1_HDR 3Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29TS+ 0x0208R2RReceive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29TS+ 0x0208R2RR	TS+	RX_TS_0_HDR	Receive TimeStamp 0 Message Header 29. See TX_TS_1_HDR 29
0x0244 TS+ 0x027ERX RSReceive TimeStamp 1 Nanoseconds Iow. See TX_TS_1_NS_LO 0x0280TS+ 0x0282RX_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI 0x0282TS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_S_LO 0x0284TS+ 0x0286RX_TS_1_S_LOReceive TimeStamp 1 Seconds Iow. See TX_TS_1_S_LO 0x0286TS+ 0x0286RX_TS_1_S_HI Receive TimeStamp 1 Seconds Iow. See TX_TS_1_S_HI NoteTS+ 0x0286RX_TS_1_S_HI Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286ReservedTS+ 0x0286RX_TS_1_HDR 0 Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 NOteTS+ 0x0290RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 NOteTS+ 0x0290RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 NOteTS+ 0x0290RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 1 Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 1 NOteTS+ 0x0226RX_TS_1_HDR N Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 29 NOte	0x0248	29	
TS+ 0x027ERX TS_1_NS_LOReceive TimeStamp 1 Nanoseconds Iow. See TX_TS_1_NS_LOTS+ 0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HITS+ 0x0282RX_TS_1_S_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_S_LOTS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Seconds Iow. See TX_TS_1_S_LOTS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds Iow. See TX_TS_1_S_HITS+ 0x0286ReservedReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286ReservedReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286ReservedReceive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+ 0x0286RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+ 0x0290RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+ 0x0290RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0206RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0206RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0206RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1	TS+	Reserved	Reserved
0x027ERX TS+RX RX TS_1_NS_LOReceive TimeStamp 1 Nanoseconds Iow. See TX_TS_1_NS_LO0x0280_TS_1_NS_LOReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI0x0282RX_TS_1_NS_HIReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_S_LOTS+RX_TS_1_S_LOReceive TimeStamp 1 Seconds Iow. See TX_TS_1_S_LO0x0284RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286ReservedReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286ReservedReserved0x0287ReservedReceive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 00x0288Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 10x0286Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 20x0291Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 10x0292Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 10x0292Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 20x0294Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0294Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 10x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 290x0226Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 290x0228Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 290x0226Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 290x0226Receive TimeStamp 1 Message Header 29. Se	0x024A		
TS+ 0x0280 <i>RX</i> _TS_1_NS_L0Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_L0TS+ 0x0282 <i>RX_TS_1_NS_HI</i> RX_TS_1_S_L0Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI0x0284 <i>RX_TS_1_S_L0</i> Receive TimeStamp 1 Seconds low. See TX_TS_1_S_L0TS+ 0x0284 <i>RX_TS_1_S_HI</i> RX_TS_1_S_HIReceive TimeStamp 1 Seconds low. See TX_TS_1_S_L00x0286 <i>Receive TimeStamp 1 Seconds low. See TX_TS_1_S_HI</i> 0x0286 <i>Reserved</i> TS+ 0x0286 <i>Reserved</i> RX_TS_1_HDR 0 0x0286 <i>Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0</i> TS+ 0x0286 <i>RX_TS_1_HDR 1</i> RX_TS_1_HDR 1 0x0290 <i>Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1</i> TS+ 0x0292 <i>RX_TS_1_HDR 2</i> TS+ 0x0294 <i>RX_TS_1_HDR 1</i> RX_TS_1_HDR N 0x0294Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+ 0x0226 <i>RX_TS_1_HDR N</i> Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 10x0282 <i>RECeive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 2</i> 0x0292 <i>RX_TS_1_HDR 1</i> TS+ 0x0204 <i>RX_TS_1_HDR 1</i> RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 10x0226 <i>RX_TS_1_HDR 2</i> 0x0226 <i>RX_TS_1_HDR 2RX_TS_1_HD</i>	TS+		
0x0280_TS_1_NS_LOTS+RX_TS_1_NS_HI0x0282Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI0x0284RX_TS_1_S_LOTS+RX_TS_1_S_LO0x0284Receive TimeStamp 1 Seconds low. See TX_TS_1_S_LO0x0286Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286ReservedTS+Reserved0x0288Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 00x0288Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 00x0280Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 20x0294Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N0x0294Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0294Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0228Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N0x0228Receive Tim	0x027E		
TS+ 0x0282RX_TS_1_NS_HI NS_TS_1_NS_HIReceive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HITS+ 0x0284RX_TS_1_S_LOReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LOTS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286ReservedReservedTS+ 0x0286ReservedReservedTS+ 0x0286RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+ 0x0286RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0292RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR 2TS+ 0x0294 TS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x0226RX_TS_1_HDR NReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N	TS+	RX	Receive TimeStamp 1 Nanoseconds low. See TX_TS_1_NS_LO
0x0282Image: Construction of the state of the	0x0280	_TS_1_NS_LO	
TS+ 0x0284RX_TS_1_S_LO RX_TS_1_S_HIReceive TimeStamp 1 Seconds low. See TX_TS_1_S_LO Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0288 TS+ 0x028CReservedReservedTS+ 0x028CRX_TS_1_HDR 0 RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+ 0x0290RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1TS+ 0x0292RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+ 0x0294 TS+ 0x02C6RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+ 0x02C8RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+ 0x02C8RX_TS_1_HDR NReceive TimeStamp 1 Message Header S. See TX_TS_1_HDR NTS+ 0x02C8RX_TS_1_HDR NReceive TimeStamp 1 Message Header S. See TX_TS_1_HDR N	TS+	RX_TS_1_NS_HI	Receive TimeStamp 1 Nanoseconds high. See TX_TS_1_NS_HI
0x0284RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HI0x0286ReservedReservedTS+ReservedReserved0x0288RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 00x0286Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 00x0288Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 00x0288Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 20x0292Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR 20x0294RX_TS_1_HDR N0x0226Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 290x0226Receive TimeStamp 1 Message Header 29. Se	0x0282		
TS+ 0x0286RX_TS_1_S_HIReceive TimeStamp 1 Seconds high. See TX_TS_1_S_HITS+ 0x0288 TS+ 0x028CReservedReservedTS+ 0x028CRX_TS_1_HDR0 RC200Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+ 0x028ERX_TS_1_HDR1 RC200Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR2 RC200Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 1TS+ 0x0292RX_TS_1_HDR2 RC200Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 2TS+ 0x0294 TS+ 0x02C6RX_TS_1_HDR N REceive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+ 0x02C6RX_TS_1_HDR REceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR NTS+ 0x02C8RX_TS_1_HDR RECEive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N	TS+	RX_TS_1_S_LO	Receive TimeStamp 1 Seconds low. See TX_TS_1_S_LO
0x0286Image: Constraint of the second se	0x0284		
0x0286ReservedReservedTS+ 0x0288 TS+ 0x028CReservedReservedTS+ 0x028ERX_TS_1_HDR 0 ParticipationReceive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 ParticipationTS+ 0x0290RX_TS_1_HDR 1 ParticipationReceive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 ParticipationTS+ 0x0290RX_TS_1_HDR 2 ParticipationReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 ParticipationTS+ 0x0292RX_TS_1_HDR N ParticipationReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N ParticipationTS+ 0x0206RX_TS_1_HDR N ParticipationReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR N ParticipationTS+ 0x02C6RX_TS_1_HDR ParticipationReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR N ParticipationTS+ 0x02C6RX_TS_1_HDR ParticipationReceive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 29 ParticipationTS+ 0x02C8ParticipationParticipationTS+ 0x02C8ParticipationParticipationTS+ 0x02C8RX_TS_1_HDR ParticipationReceive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29 Participation	TS+	RX_TS_1_S_HI	Receive TimeStamp 1 Seconds high. See TX_TS_1_S_HI
Ox0288 TS+ 0x028CRX_TS_1_HDR 0 Image: Note of the state	0x0286		
TS+ 0x028CRX_TS_1_HDR 0 RX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 0x028ETS+ 0x0290RX_TS_1_HDR 1 RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0290TS+ 0x0292RX_TS_1_HDR 2 RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 0x0294TS+ 0x0294 TS+ 0x02C6RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294TS+ 0x02C6RX_TS_1_HDR N Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR N	TS+	Reserved	Reserved
0x028CRX_TS_1_HDR 0Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 00x028EReceive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0TS+RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 10x0290Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2TS+RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 20x0292Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR NTS+RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR N0x0294TS+RX_TS_1_HDR N0x02C6See TX_TS_1_HDR NTS+RX_TS_1_HDRReceive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 290x02C829See TX_TS_1_HDR 29	0x0288		
TS+ 0x028ERX_TS_1_HDR 0 RX_TS_1_HDR 1Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0 Nessage Header 1. See TX_TS_1_HDR 1 RX_TS_1_HDR 1TS+ 0x0290RX_TS_1_HDR 2 RX_TS_1_HDR 2Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 Nessage Header N. See TX_TS_1_HDR 2TS+ 0x0294 TS+ 0x02C6RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N Nessage Header S. See TX_TS_1_HDR N Receive TimeStamp 1 Message Header S. See TX_TS_1_HDR N See TX_TS_1_HDR NTS+ 0x02C6RX_TS_1_HDR See TX_TS_1_HDR NTS+ 0x02C8RX_TS_1_HDR See TX_TS_1_HDR 29TS+ 0x02C8RX_TS_1_HDR See TX_TS_1_HDR 29	TS+		
0x028E RX_TS_1_HDR 1 Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1 0x0290 RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 0x0292 RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 0x0292 RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294 RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0226 RX_TS_1_HDR N Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR N 0x02C6 RX_TS_1_HDR N Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29 0x02C8 29 Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29	0x028C		
TS+ 0x0290RX_TS_1_HDR 1 	TS+	RX_TS_1_HDR0	Receive TimeStamp 1 Message Header 0. See TX_TS_1_HDR 0
0x0290Image: Construction of the state of the	0x028E		
TS+ RX_TS_1_HDR 2 Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2 0x0292 TS+ RX_TS_1_HDR N Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0294 TS+ Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N 0x0206 Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N TS+ RX_TS_1_HDR Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29 0x02C6 RX_TS_1_HDR Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29 0x02C8 29 Image: Note:	TS+	RX_TS_1_HDR 1	Receive TimeStamp 1 Message Header 1. See TX_TS_1_HDR 1
0x0292RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR N0x0294FS+RX_TS_1_HDR N0x02C6TS+RX_TS_1_HDR0x02C829Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29	0x0290		
TS+RX_TS_1_HDR NReceive TimeStamp 1 Message Header N. See TX_TS_1_HDR N0x0294TS+0x02C6TS+RX_TS_1_HDRReceive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 290x02C8294	TS+	RX_TS_1_HDR 2	Receive TimeStamp 1 Message Header 2. See TX_TS_1_HDR 2
0x0294 TS+ 0x02C6 End of the second seco	0x0292		
TS+	TS+	RX_TS_1_HDR N	Receive TimeStamp 1 Message Header N. See TX_TS_1_HDR N
0x02C6 Image: Constraint of the state of	0x0294		
TS+ RX_TS_1_HDR Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29 0x02C8 29	TS+		
0x02C8 29	0x02C6		
	TS+	RX_TS_1_HDR	Receive TimeStamp 1 Message Header 29. See TX_TS_1_HDR 29
	0x02C8	29	
TS+ RX Receive TimeStamp 3 Nanoseconds low. See TX_TS_1_NS_LO	TS+	RX	Receive TimeStamp 3 Nanoseconds low. See TX_TS_1_NS_LO
0x0380 _TS_3_NS_LO	0x0380	_TS_3_NS_LO	
TS+ RX_TS_3_NS_HI Receive TimeStamp 3 Nanoseconds high. See TX_TS_1_NS_HI	TS+		Receive TimeStamp 3 Nanoseconds high. See TX_TS_1_NS_HI
0x0382	0x0382		
TS+ RX_TS_3_S_LO Receive TimeStamp 3 Seconds Iow. See TX_TS_1_S_LO	TS+	RX_TS_3_S_LO	Receive TimeStamp 3 Seconds low. See TX_TS_1_S_LO
0x0384			·

Address	Register	Description
TS+	RX_TS_3_S_HI	Receive TimeStamp 3 Seconds high. See TX_TS_1_S_HI
0x0386		
TS+	Reserved	Reserved
0x0388		
TS+		
0x038C		
TS+	RX_TS_3_HDR0	Receive TimeStamp 3 Message Header 0. See TX_TS_1_HDR 0
0x038E		
TS+	RX_TS_3_HDR 1	Receive TimeStamp 3 Message Header 1. See TX_TS_1_HDR 1
0x0390		
TS+	RX_TS_3_HDR 2	Receive TimeStamp 3 Message Header 2. See TX_TS_1_HDR 2
0x0392		
TS+	RX_TS_3_HDR N	Receive TimeStamp 3 Message Header N. See TX_TS_1_HDR N
0x0394		
TS+		
0x03C6		
TS+	RX_TS_3_HDR	Receive TimeStamp 3 Message Header 29. See TX_TS_1_HDR 29
0x03C8	29	
TS+	Reserved	Reserved
0x03CA		
TS+		
0x03FE		

6.9.3 Virtual LAN Configuration Registers

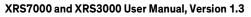
Virtual LAN configuration registers are presented in Table 29.

When a frame comes in from a port, its VLAN ID is checked against the VLAN configuration in the VLAN configuration registers. If the port is not a member of the VLAN the frame belongs to, the frame is dropped. Frames without a VLAN tag are mapped to the port's default VLAN (configured in PORT_VLAN_ID register). Untagged frames can be dropped by setting the default VLAN to a VLAN the port is not a member of.

A frame can be forwarded only to the ports that are members of the VLAN the frame belongs to. If the frame is a unicast frame and the destination port (according to the MAC address table) is not a member of the VLAN, the frame is forwarded to all the other ports that are members of the VLAN. Note that the reserved VLAN IDs 0x1, 0x2 and 0xFFF are handled the same way as the other VLAN IDs. Frames with the reserved VLAN ID 0x0 (priority tagged frames) can be mapped to any other VLAN.

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out


		Table 29. V	able 29. Virtual LAN Configuration Registers					
Address	Register	Descri	Description					
VLAN+	VLANO	Reset:	Reset: 2^(NUMBER_OF_PORTS)-1					
0x0000		VLAN I	DO Mask.	The regis	ter is reserved in XRS3003.			
		Bits	15-0:	R/W	VLAN mask for VLAN ID 0			
					Bit 0 corresponds to port 0, bit 1			
					corresponds to port 1, and so on.			
					0 = The port is not a member of this VLAN			
					1 = The port is a member of this VLAN			
VLAN+	VLAN1	Reset:	Reset: 2^(NUMBER_OF_PORTS)-1					
0x0002		VLAN I	VLAN ID1 Mask. The register is reserved in XRS3003.					
		Bits	15-0:	R/W	VLAN mask for VLAN ID 1			
					Bit 0 corresponds to port 0, bit 1			
					corresponds to port 1, and so on.			
					0 = The port is not a member of this VLAN			
					1 = The port is a member of this VLAN			
VLAN+	VLAN4095	Reset:	2^(NUMB	ER_OF_	PORTS)-1			
0x1FFE		VLAN I	VLAN ID4095 Mask. The register is reserved in XRS3003.					
		Bits	15-0:	R/W	VLAN mask for VLAN ID 4095			
					Bit 0 corresponds to port 0, bit 1			
					corresponds to port 1, and so on.			
					0 = The port is not a member of this VLAN			
					1 = The port is a member of this VLAN			

6.10 Port Configuration Registers

Table 30 presents the port configuration register groups. The port configuration registers are used to configure port-specific features of RS.

Address	Acronym	Register group description	Section	Table
Offset				
0x0000	GEN	General configuration and	6.10.1	Table 31
		state registers		
0x2000	HSR	HSR configuration registers	6.10.2	Table 32
0x4000	PTP	PTP configuration registers	6.10.3	Table 34
0x6000	CNT	Counter Registers (not in	6.10.4	Table 35
		XRS3003)		
0x8000	IPO	Inbound policy registers	6.10.5	Table 36

Table 30. Port Configuration Register Groups

6.10.1 General Configuration and State Registers

General configuration and state registers are presented in Table 31.

Address	Register	Descri	Description						
GEN+	PORT_STATE	Reset:	0 x 02 02	2					
0x0000		Port St	Port State Register						
		Bits	1-0:	R/W	 Port Forwarding state 00 = Forwarding. Port learns MAC addresses and forwards data. 01 = Learning. Port learns MAC addresses, but does not forward data. (for STP/RSTP) 10 = Disabled. Port neither learns MAC addresses nor forwards data. 11 = Reserved 				
		Bits	3-2:	R/W	Port management state 00 = Normal mode 01 = Management mode. Only frames with a management trailer can be sent to this port and it sends all frames with a management trailer. It is not allowed to configure a port to Management mode and PRP mode (HSR_CFG register) at the same time. In XRS3003 only port 0 can be configured in Management mode. 10 = Reserved 11 = Reserved				
		Bits	9-4:	R/W	Speed select 000000 = automatic (RGMII ports only) 010010 = 1000 Mb/s (RGMII ports only) 100000 = 100 Mb/s 110000 = 10 Mb/s				
		Bits	11- 10:	RO	Current speed Updated only when the speed selection is automatic 00 = Reserved 01 = 1000 Mb/s 10 = 100 Mb/s 11 = 10 Mb/s				
		Bits	15-	RO	Reserved				

Table 31. General Configuration and State Registers

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

Address	Register	Descri	Description				
GEN+0x2	Reserved	Reserv	Reserved				
GEN+0xE							
GEN+	PORT_VLAN	Reset:	0 x 8F FF				
0x0010		Port VL	AN Conf	iguration	Register. The register is reserved in XRS3003.		
		Bits	11-0:	R/W	Port default VLAN		
					Incoming untagged frames are mapped to		
					this VLAN. Outgoing frames with this VLAN		
					are sent untagged. Value $0x0 =$ reserved.		
		Bits	14-	R/W	Port default PCP		
			12:		Priority Code Point (PCP) for the frames		
					coming in from the port without a VLAN tag.		
					This setting together with Port VLAN		
					Priority Register defines also the priority for		
			the frames inside RS.				
		Bit	15:	R/W	Tagged/untagged		
					Defines whether frames are sent out with or		
					without a VLAN tag. Does not affect		
					handling of incoming frames.		
					0 = no VLAN tags are added to the frames		
					at exit. Because one VLAN tag per frame is		
					always removed in ingress, the number of		
					VLAN tags in frames decreases by one		
					when a frame goes through RS.		
					1 = a VLAN tag is added to every frame at		
					exit, except for default VLAN. Because one		
					VLAN tag per frame is always removed in		
					ingress, the number of VLAN tags in the		
					frame increases by one for frames that did		
					not have a VLAN tag and stays the same for		
					frames that had one or more VLAN tags		
					(except for default VLAN for which the		
					number of VLAN tags decreases by one).		

Address	Register	Descri	Description				
GEN+	VLAN0_MAPPING	Reset: 0 x 00 00					
0x0012		VLAN ID0 Mapping. The register is reserved in XRS3003.					
		Bits	11-0:	R/W	Default VLAN for Priority Tagged Frames. Incoming frames with priority tag (VLAN ID		
					0) are mapped to this VLAN. This setting		
					does not affect frames going out of this		
					port.		
		Bits	15-	RO	Reserved		
			12:				
GEN+	PORT_FWD_MASK	Reset: 0	0 x 00 00				
0x0014		Forward	d Portmas	sk Config	uration Register. Configures to which ports		
		forwarc	ling is allo	wed from	n this port.		
		Bits	15-0:	R/W	Port forward mask		
					Bit 0 corresponds to port 0, bit 1		
					corresponds to port 1, and so on.		
					0 = Enable forwarding to the port		
					1 = Disable forwarding to the port		

Address	Register	Descri	Description					
GEN+	PORT_VLAN_PRIO	Reset:	0 x FA50					
0x0016		Port VLAN Priority Register. Contains priorities for VLAN Priority Code						
		Points (PCP). Lowest priority is 0, highest is 3. The priority the frame gets						
		defines into which output priority queue the frame is put into. The register						
		is reser	ved in XF	RS3003.				
		Bits	1-0:	R/W	Priority, PCP0			
					Frames with Priority Code Point 0 in their			
					VLAN tag get this priority inside RS.			
		Bits	3-2:	R/W	Priority, PCP1			
					Frames with Priority Code Point 1 in their			
					VLAN tag get this priority inside RS.			
		Bits	5-4:	R/W	Priority, PCP2			
					Frames with Priority Code Point 2 in their			
				VLAN tag get this priority inside RS.				
		Bits	7-6:	R/W	Priority, PCP3			
					Frames with Priority Code Point 3 in their			
					VLAN tag get this priority inside RS.			
		Bits	9-8:	R/W	Priority, PCP4			
					Frames with Priority Code Point 4 in their			
					VLAN tag get this priority inside RS.			
		Bits	11-	R/W	Priority, PCP5			
			10:		Frames with Priority Code Point 5 in their			
					VLAN tag get this priority inside RS.			
		Bits	13-	R/W	Priority, PCP6			
			12:		Frames with Priority Code Point 6 in their			
					VLAN tag get this priority inside RS.			
		Bits	15-	R/W	Priority, PCP7			
			14:		Frames with Priority Code Point 7 in their			
					VLAN tag get this priority inside RS.			

6.10.2 HSR/PRP Registers

HSR/PRP registers are presented in Table 32.

Address	Register	Descri	ption						
HSR+	HSR_CFG	Reset:	- 0 x 00 00)					
0x0000	_	HSR/F	HSR/PRP Configuration Register						
			This register can be updated only when the port is disabled via						
			PORT_STATE (Table 31) register. Configuration change procedure:						
			-	-	ports (PORT_STATE register)				
		- Chan	ge mode	(HSR_CF	G) for both redundant ports				
		- Enab	le both co	onfigured	ports (PORT_STATE)				
		Bit	0:	R/W	Port Mode				
					0 = HSR/PRP disabled for the port				
					1 = HSR/PRP enabled for the port				
		Bits	7-1:	RO	Reserved				
		Bit	8:	R/W	HSR/PRP mode select				
					0 = Port is in HSR mode				
					1 = Port is in PRP mode				
					The selection is valid only when HSR/PRP is				
				enabled (bit $0=1$).					
		Bit	9:	R/W	Redundant/Interlink mode select				
					0 = Port is HSR/PRP redundant port				
					1 = Port is HSR/PRP interlink port				
					The selection is valid only when HSR/PRP is				
					enabled (bit $0=1$). Note that in a valid				
					configuration there is either two or zero				
					redundant ports.				
		Bit	10:	R/W	LanId for the port				
					If this port is in PRP mode and a frame is				
					output from this port, this bit determines the				
					LanId of the frame				
					0 = 0 x A				
					1 = 0 x B				
					Note that this bit has also another meaning				
					(PathId) described below. For HSR/PRP				
					redundant ports this bit must be 0 for the				
					other redundant port and 1 for the other				
					redundant port.				

Address	Register	Descri	ption		
		Bits	13-11:	R/W	NetId for the port
					If this port is in PRP mode and a frame from
					a HSR port is forwarded into this port and
					the NetID in the frame matches this NetID,
					the frame is dropped.
					Note that these bits have also another
					meaning (PathId) described below.
		Bits	13-10:	R/W	PathId for the port
					If this port is in non-HSR mode and a frame
					from this port goes out from an HSR port,
					the PathID of the HSR tag is given this value
					(see Table 23 and Table 24). Note that these
					bits have also another meaning
					(LandId/NetId) described above.
		Bits	15-14:	RO	Reserved

6.10.3 PTP Registers

PTP registers are presented in Table 34. Interface type specific PTP Delay corrections are presented in Table 33. Adding the values presented in Table 33 to the values written to registers PTP_RX_SYNC_DELAY_NS_LOW, PTP_RX_EVENT_DELAY_NS and PTP_TX_EVENT_DELAY_NS make PTP corrections more accurate. For example in case of peer-to-peer transparent clock, if the link delay is 50 ns, RX latency of the PHY is 220 ns, the interface type is RGMII and the port is in gigabit mode, the value written to register PTP_RX_SYNC_DELAY_NS_LOW is 50 + 220 + 40 = 310.

Interface type:	RMII		RGMII	
Direction:	RX	ТХ	RX	TX
1000Mbit/s	-	-	40	16
100Mbit/s	100	120	200	80
10Mbit/s	260	440	2000	800

Table 33. Delay Correction Values for PTP Registers

XRS7000 and XRS3000 User Manual, Version 1.3

Table 34. PTP Registers									
Address	Register	Descrip	tion						
PTP+	Reserved	Reserve	d						
0x0000									
PTP+	PTP_RX_SYNC_	Reset: 0 x 00 00							
0x0002	DELAY_NS_LOW	Contains the lowest 16 bits of the Receive delay compensation for PTP							
		Sync messages.							
		This value is added to the correction field of every received Sync message							
		in additi	on to resid	lence time	e and TX delay.				
		This con	npensatio	n consist (of delay from device input to XRS input				
		(include	s for exam	ple PHY o	lelay), link delay for peer-to-peer transparent				
		clock an	d a consta	ant correc	tion value that depends on interface type and				
		speed (s	ee Table 3	33). For ei	nd-to-end transparent clock this register must				
		be set to	same val	ue as PTF	_RX_EVENT_DELAY_NS. Write access to				
					the value in register PTP_RX_SYNC				
		-	_NS_H						
		Bits	15-0:	R/W	Sync delay, nanosecond bits 15:0				
PTP+	PTP_RX_SYNC_	Reset: 0	x 00 00						
0x0004	DELAY_NS_HIGH	Contain	s bits 16	.23 of the	Receive delay compensation for PTP Sync				
		messag	es.						
		This valu	ie is adde	d to the co	prrection field of every received Sync message				
		in additi	on to resid	lence time	e and TX delay.				
		This con	npensatio	n consist (of delay from device input to XRS input				
		(include	s for exam	ple PHY o	lelay), link delay for peer-to-peer transparent				
		clock an	d a consta	ant correc	tion value that depends on interface type and				
		speed (s	ee Table 3	33). For ei	nd-to-end transparent clock this register must				
		be set to	value Ox(Э.					
		XRS sta	rts using t	he value i	n this register after writing to register				
		PTP_D	ELAY_NS	_LOW.					
		Bits	7-0:	R/W	Sync delay, nanosecond bits 23:16				
		Bits	15-8:	RO	Reserved				
PTP+	Reserved	Reserve	d						
0x0006									
PTP+									
0x0008									

Table 34. PTP Registers

XRS7000 and XRS3000 User Manual, Version 1.3

Address	Register	Descrip	Description						
PTP+	PTP_RX_EVENT	Reset: 0	Reset: 0 x 00 00						
0x000A	_DELAY_NS	Contains the Receive delay compensation for all the PTP Event messages							
		except S	Sync mess	ages (who	o have an own compensation register).				
		This valu	ue is addeo	d to the co	prrection field of every received Event message				
		(except	for Sync m	nessages)	in addition to residence time and TX delay.				
		This con	npensatio	n value co	nsist of delay from device input to XRS input				
		(include	s for exam	ple PHY o	delay) and a constant correction value that				
		depends	s on interfa	ace type a	nd speed (see Table 33).				
		Bits	Bits 14-0: R/W Event delay, nanoseconds						
		Bits	15:	RO	Reserved				
PTP+	Reserved	Reserve	d	•					
0x000C									
PTP+									
0x0010									
PTP+	PTP_TX_EVENT	Reset: 0	x 00 00						
0x0012	_DELAY_NS	Contain	s the Trans	smit delay	compensation for all the PTP Event messages.				
		This valu	ue is addeo	d to the co	prrection field of every transmitted Event				
		message	e in additic	on to resid	lence time and RX delay.				
		This con	npensatio	n value co	nsist of delay from XRS output to device				
		output (i	includes fo	or example	e PHY delay) and a constant correction value				
		that dep	ends on in	terface ty	/pe and speed (see Table 33).				
		Bits	14-0:	R/W	Event delay, nanoseconds				
		Bits	15:	RO	Reserved				

6.10.4 Counter Registers

Counter registers are presented in Table 35. The counters are designed to support the Ethernet Statistics Group of Remote Network MONitoring (RMON) SNMP MIB (RFC 2819). The register area is reserved in XRS3003.

		- ·					
Address	Register		Description				
CNT+	CNT_CTRL		0 x 00 00				
0x0000		Counte	Counter control.				
		This reg	gister con	trols the f	unctionality on the other counter registers.		
		Bit	0:	R/SC	Capture		
					Writing 1 to this bit captures all the		
					counters after which the counter values		
					are written to the corresponding		
					registers. After capture the counters are		
					reset. So the registers contain the number		
					of events that happened between two		
					successive captures.		
		Bits	15-1:	RO	Reserved		
CNT+	Reserved	Reserve	ed	1			
0x0002							
CNT+							
0x01FE							
CNT +	RX_GOOD_	Reset: 0	0 x 00 00				
CNT + 0x0200	RX_GOOD_ OCTETS_L		0 x 00 00 od Octets				
-		RX Goo	od Octets	Low	updated after writing 1 to Capture bit in		
-		RX Goo The val	od Octets ue in this	Low register is	updated after writing 1 to Capture bit in nble and SFD are not counted to frame		
-		RX Goo The val CNT_C	od Octets ue in this CTRL regi	Low register is	mble and SFD are not counted to frame		
-		RX Goo The val CNT_C length.	od Octets ue in this CTRL regi FCS (CRC	Low register is ster. Prear C) is count	mble and SFD are not counted to frame		
-		RX Goo The val CNT_C length. Frames	od Octets ue in this CTRL regi FCS (CRC are cons	Low register is ster. Prear C) is count idered as	mble and SFD are not counted to frame ed.		
-		RX Goo The val CNT_C length. Frames was no	od Octets ue in this CTRL regis FCS (CRC are cons RX error	Low register is ster. Prear C) is count idered as during the	mble and SFD are not counted to frame ed. good frames if they have valid CRC, there		
-		RX Goo The val CNT_C length. Frames was no octets (od Octets ue in this CTRL regi FCS (CRC are cons RX error 70 to 153	Low register is ster. Prear C) is count idered as during the 36 with HS	mble and SFD are not counted to frame ed. good frames if they have valid CRC, there receiving and their length is 64 to 1536		
-		RX Goo The val CNT_C length. Frames was no octets (good fr	od Octets ue in this CTRL regis FCS (CRC are cons RX error (70 to 155 ame, it's c	Low register is ster. Prear C) is count idered as during the 36 with HS considered	mble and SFD are not counted to frame ed. good frames if they have valid CRC, there receiving and their length is 64 to 1536 SR/PRP). If a frame is not considered as a		
-		RX Goo The val CNT_C length. Frames was no octets (good fr	od Octets ue in this CTRL regis FCS (CRC are cons RX error (70 to 155 ame, it's c	Low register is ster. Prear C) is count idered as during the 36 with HS considered	mble and SFD are not counted to frame ed. good frames if they have valid CRC, there receiving and their length is 64 to 1536 SR/PRP). If a frame is not considered as a d as a bad frame.		

Table 35. Counter Registers (not in XRS3003)

XRS7000 and XRS3000 User Manual, Version 1.3

Address	Register	Descrip	otion					
CNT+	RX_GOOD_	Reset: C	0 x 00 00					
0x0202	OCTETS_H	RX Goo	d Octets	High				
		The valu	 The value in this register is updated after writing 1 to Capture bit in CNT_CTRL register. Preamble and SFD are not counted to frame length. FCS (CRC) is counted. Frames are considered as good frames if they have valid CRC, there was no RX error during the receiving and their length is 64 to 1536 					
		CNT_C						
		length. I						
		Frames						
		was no						
		octets ('	70 to 153	36 with HS	SR/PRP). If a frame is not considered as a			
		good fra	ame, it's c	onsidere	d as a bad frame.			
		The cou	nter satu	rates to O	x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of octets in good frames received			
CNT+	RX_BAD_	Reset: 0	x 00 00		5			
0x0204	OCTETS_L		Octets Lo	w				
					updated after writing 1 to Capture bit in			
				-	mble and SFD are not counted to frame			
		_	length. FCS (CRC) is counted.					
		-	Frames are considered as bad frames if they do not have a valid CRC,					
			an RX error happened during reception or their length is under 64					
			octets (under 70 with HSR/PRP) or over 1536 octets. If a frame is not					
					ne, it's considered as a bad frame.			
			-	•	x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received octets in bad			
					Ethernet frames			
CNT+	RX_BAD_	Reset: () x 00 00					
0x0206	OCTETS_H		Octets H	iah				
				•	updated after writing 1 to Capture bit in			
				•	mble and SFD are not counted to frame			
			-	c) is count				
		U	•					
			Frames are considered as bad frames if they do not have a valid CRC, an RX error happened during reception or their length is under 64					
					P/PRP) or over 1536 octets. If a frame is not			
					he, it's considered as a bad frame.			
				•	x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
		Dits	10-0.		Number of received octets in bad			
					Ethernet frames			

Address	Register	Descrip	otion					
CNT+	RX_UNICAST_L	Reset: 0	0 x 00 00					
0x0208		RX Unicast Low						
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received good unicast frames			
CNT+	RX_UNICAST_H	Reset: 0	x 00 00		1			
0x020A		RX Unic	ast High					
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received good unicast frames			
CNT +	RX_BROADCAST_L	Reset: 0	x 00 00		1			
0x020C		RX Broa	adcast Lo	w				
		The value in this register is updated after writing 1 to Capture bit in						
		CNT_CTRL register. The counter saturates to 0x FFFF FFFF.						
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received good broadcast			
					frames			
CNT +	RX_BROADCAST_H	Reset: 0	0 x 00 00					
0x020E		RX Broa	adcast Hi	gh				
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received good broadcast			
					frames			
CNT +	RX_MULTICAST_L	Reset: 0	x 00 00					
0x0210		RX Mult	icast Lov	/				
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received good multicast			
					frames. Does not include broadcast			
					frames counted in			
					RX_BROADCAST_L/H.			

Address	Register	Descri	otion				
CNT+	RX_MULTICAST_H	Reset: 0	0 x 00 00				
0x0212		RX Mult	ticast Hig	h			
		The value in this register is updated after writing 1 to Capture bit in					
		CNT_C	TRL regis	ster. The c	ounter saturates to 0x FFFF FFFF.		
		Bits	15-0:	RO	Counter value, bits 31:16		
					Number of received good multicast		
					frames. Does not include broadcast		
					frames counted in		
					RX_BROADCAST_L/H.		
CNT+	RX_UNDERSIZE_L	Reset: 0	0 x 00 00		1		
0x0214		RX Und	ersize Lo	w			
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in		
		CNT_C	TRL regis	ster. Unde	rsized frames are considered as bad frames,		
		and the	y are not [.]	forwarded	d. The counter saturates to 0x FFFF FFFF.		
		Bits	15-0:	RO	Counter value, bits 15:0		
					Number of received frames with valid CRC		
					and under 64 octets in length (under 70		
					octets with HSR/PRP).		
CNT+	RX_UNDERSIZE_H	Reset: 0	0 x 00 00				
0x0216		RX Und	ersize Hię	gh			
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in		
		CNT_C	TRL regis	ster. Unde	rsized frames are considered as bad frames,		
		and the	y are not [.]	forwarded	d. The counter saturates to 0x FFFF FFFF.		
		Bits	15-0:	RO	Counter value, bits 31:16		
					Number of received frames with valid CRC		
					and under 64 octets in length (under 70		
					octets with HSR/PRP).		
CNT+	RX_FRAGMENTS	Reset: 0) x 00 00				
0x0218	_L	RX Fraç	gments Lo	w			
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in		
		CNT_C	TRL regis	ster. Fragr	nents are considered as bad frames, and		
		they are	not forw	arded. Th	e counter saturates to 0x FFFF FFFF.		
		Bits	15-0:	RO	Counter value, bits 15:0		
					Number of received frames with invalid		
					CRC and length under 64 octets.		

Address	Register	Descri	otion					
CNT+	RX_FRAGMENTS	Reset: (0 x 00 00					
0x021A	_н	RX Frag	RX Fragments High					
		The valu	ue in this	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regi	ster. Frag	ments are considered as bad frames, and			
		they are	e not forw	varded. Th	e counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received frames with invalid			
					CRC and length under 64 octets.			
CNT+	RX_OVERSIZE_L	Reset: 0	0 x 00 00	1	1			
0x021C		RX Ove	rsize Low	/				
		The valu	ue in this	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regi	ster. Over	sized frames are considered as bad frames,			
		and the	y are not	forwarde	d. The counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received frames with valid CRC			
					and length over 1536 octets.			
CNT+	RX_OVERSIZE_H	Reset: 0 x 00 00						
0x021E		RX Oversize High						
		The valu	ue in this	updated after writing 1 to Capture bit in				
		CNT_CTRL register. Oversized frames are considered as bad frame						
		and they are not forwarded. The counter saturates to 0x FFFF FFFF.						
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received frames with valid CRC			
					and length over 1536 octets.			
CNT+	RX_JABBER_L	Reset: 0	0 x 00 00	1				
0x0220		RX Jabb	ber Low					
		The valu	ue in this	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regi	ster. Jabb	er frames are considered as bad frames, and			
		they are	e not forw	varded. Th	e counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received frames with invalid			
					CRC and length over 1536 octets.			
CNT+	RX_JABBER_H	Reset: 0	0 x 00 00					
0x0222		RX Jabb	ber High					
		The valu	ue in this	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regi	ster. Jabb	er frames are considered as bad frames, and			
		they are	e not forw	varded. Th	e counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received frames with invalid			
					CRC and length over 1536 octets.			

Address	Register	Descri	Description						
CNT +	RX_ERR_L	Reset: (0 x 00 00						
0x0224		RX Erro	or Low						
		The val	ue in this	register i	s updated after writing 1 to Capture bit in				
		CNT_C	TRL regi	ster. RX I	Erroneous frames are considered as bad				
		frames,	and they	are not f	orwarded. The counter saturates to 0x FFFF				
		FFFF.							
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with an error,				
					with size from 64 to 1536 octets, with or				
					without a valid CRC. Includes frames with				
					non-integral number of bytes and those				
					received with RX Error signal from the				
					PHY.				
CNT+	RX_ERR_H	Reset: (00 00 x 00						
0x0226		RX Erro	RX Error High						
		The value in this register is updated after writing 1 to Capture bit in							
		CNT_C	CNT_CTRL register. RX Erroneous frames are considered as bad						
		frames,	frames, and they are not forwarded. The counter saturates to 0x FFFF						
		FFFF.							
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with an error,				
					with size from 64 to 1536 octets, with or				
					without a valid CRC. Includes frames with				
					non-integral number of bytes and those				
					received with RX Error signal from the				
					PHY.				
CNT+	RX_CRC_L	Reset: (0 x 00 00	1	'				
0x0228		RX CRO	Error Lo	w					
		The val	ue in this	register i	s updated after writing 1 to Capture bit in				
		CNT_C	TRL regi	ster. CRC	Erroneous frames are considered as bad				
		frames,	and they	are not f	orwarded. The counter saturates to 0x FFFF				
		FFFF.							
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with size from				
					64 to 1536 octets and without a valid				
					CRC, but not counted in RX_ERR_L/H.				

Address	Register	Descri	Description						
CNT+	RX_CRC_H	Reset: (Reset: 0 x 00 00						
0x022A		RX CRO	CError Hig	gh					
		The val	ue in this i	register i	s updated after writing 1 to Capture bit in				
		CNT_C	TRL regis	ster. CRC	Erroneous frames are considered as bad				
		frames,	and they	are not f	orwarded. The counter saturates to 0x FFFF				
		FFFF.							
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with size from				
					64 to 1536 octets and without a valid				
					CRC, but not counted in RX_ERR_L/H.				
CNT +	RX_64_L	Reset: (00 00 x 00						
0x022C	RX 64 0	Octets Lov	w						
		The val	The value in this register is updated after writing 1 to Capture bit in						
		CNT_C	TRL regis	ster. The	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with size of				
					exactly 64 octets, including frames with				
					errors.				
CNT+	RX_64_H	Reset: (00 00 x 00						
0x022E		RX 64 Octets High							
		The value in this register is updated after writing 1 to Capture bit in							
		CNT_C	TRL regis	ster. The	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with size of				
					exactly 64 octets, including frames with				
					errors.				
CNT +	RX_65_127_L	Reset: (0 x 00 00						
0x0230		RX 65 t	RX 65 to 127 Octets Low						
		The val	The value in this register is updated after writing 1 to Capture bit in						
		CNT_C	TRL regis	ster. The	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with size of 65				
					to 127 octets, including frames with				
					errors.				

Address	Register	Descri	ption						
CNT+	RX_65_127_H	Reset: (0 x 00 00						
0x0232		RX 65 t	RX 65 to 127 Octets High						
		The val	ue in this	register is	s updated after writing 1 to Capture bit in				
		CNT_C	TRL regis	ster. The	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with size of 65				
					to 127 octets, including frames with				
					errors.				
CNT+	RX_128_255_L	Reset: (00 00 x 0		'				
0x0234		RX 128	to 255 C	Octets Lov	N				
		The val	ue in this	register is	s updated after writing 1 to Capture bit in				
		CNT_C	TRL regis	ster. The	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with size of				
					128 to 255 octets, including frames with				
					errors.				
CNT+	RX_128_255_H	Reset: 0 x 00 00							
0x0236		RX 128 to 255 Octets High							
		The val	The value in this register is updated after writing 1 to Capture bit in						
		CNT_C	CNT_CTRL register. The counter saturates to 0x FFFF FFFF.						
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with size of				
					128 to 255 octets, including frames with				
					errors.				
CNT +	RX_256_511_L	Reset: (0 x 00 00						
0x0238		RX 256	6 to 511 C	Octets Lov	N				
				-	s updated after writing 1 to Capture bit in				
				1	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of received frames with size of				
					256 to 511 octets, including frames with				
					errors.				
CNT +	RX_256_511_H		0 x 00 00						
0x023A			to 511 C	-	-				
			The value in this register is updated after writing 1 to Capture bit in						
					counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 31:16				
					Number of received frames with size of				
					256 to 511 octets, including frames with				
					errors.				

Address	Register	Descri	otion					
CNT+	RX_512_1023_L	Reset: 0	0 x 00 00					
0x023C		RX 512	RX 512 to 1023 Octets Low					
		The valu	ue in this i	register is	s updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received frames with size of			
					512 to 1023 octets, including frames with			
					errors.			
CNT+	RX_512_1023_H	Reset: 0) x 00 00					
0x023E		RX 512	to 1023	Octets Hi	igh			
		The valu	ue in this i	register is	s updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The o	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received frames with size of			
					512 to 1023 octets, including frames with			
					errors.			
CNT+	RX_1024_	Reset: 0	0 x 00 00					
0x0240	1536_L	RX 102	4 to 153	6 Octets I	Low			
		The valu	ue in this i	register is	s updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received frames with size of			
					1024 to 1536 octets, including frames			
					with errors.			
CNT+	RX_1024_	Reset: (00 00 x 00 00					
0x0242	1536_H	RX 102	4 to 153	6 Octets I	High			
		The valu	ue in this i	register is	s updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The o	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received frames with size of			
					1024 to 1536 octets, including frames			
					with errors.			

Address	Register	Descri	otion					
CNT+	RX_HSRPRP_L	Reset: 0	0 x 00 00					
0x0244		RX HSR/PRP Frames Low						
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of good HSR frames received			
					while in HSR mode and number of good			
					PRP frames received while in PRP mode.			
					The counter does not count HSR frames in			
					non-HSR mode or PRP frames in non-			
					PRP mode. The counter is not reset when			
					changing modes.			
CNT+	RX_HSRPRP_H	Reset: 0	0 x 00 00		1			
0x0246		RX HSF	R/PRP Fra	ames Higl	า			
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of good HSR frames received			
					while in HSR mode and number of good			
					PRP frames received while in PRP mode.			
					The counter does not count HSR frames in			
					non-HSR mode or PRP frames in non-			
					PRP mode. The counter is not reset when			
					changing modes.			
CNT+	RX_WRONGLAN_L	Reset: 0	00 00 x 00		,			
0x0248		RX Wro	ng LAN L	ow				
		The value in this register is updated after writing 1 to Capture bit in						
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of received good frames with			
					wrong LAN identifier. The counter is used			
					only when the port is in PRP mode.			
CNT+	RX_WRONGLAN _H	Reset: 0	0 x 00 00		·			
0x024A		RX Wro	ng LAN H	ligh				
		The valu	ue in this i	register is	updated after writing 1 to Capture bit in			
		CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of received good frames with			
					wrong LAN identifier. The counter is used			
					only when the port is in PRP mode.			

Register	Descri	otion				
RX_DUPLICATE_L	Reset: 0	0 x 00 00				
0x024C			v			
	The valu	ue in this r	register is	updated after writing 1 to Capture bit in		
	CNT_C	TRL regis	ster. The c	counter saturates to 0x FFFF FFFF.		
	Bits	15-0:	RO	Counter value, bits 15:0		
				Number of frames received that are		
				detected as copies of frames received		
				earlier from this or another HSR/PRP		
				port. The counter is used only when the		
				port is in HSR or PRP mode.		
RX_DUPLICATE_H	Reset: 0) x 00 00				
	RX Dup	licate Hig	h			
	The valu	ue in this r	register is	updated after writing 1 to Capture bit in		
			-	counter saturates to 0x FFFF FFFF.		
	Bits	15-0:	RO	Counter value, bits 31:16		
				Number of frames received that are		
				detected as copies of frames received		
				earlier from this or another HSR/PRP		
				port. The counter is used only when the		
				port is in HSR or PRP mode.		
Reserved	Reserve	ed				
TX OCTETS L	Reset: 0	0 x 00 00				
	TX Octe	ets Low				
	The valu	ue in this r	register is	updated after writing 1 to Capture bit in		
			-	counter saturates to 0x FFFF FFFF.		
	Bits	15-0:	RO	Counter value, bits 15:0		
				Total number of octets in frames		
				transmitted.		
TX OCTETS H	Reset: 0) x 00 00	1	1		
	The value in this register is updated after writing 1 to Capture bit in CNT_CTRL register. The counter saturates to 0x FFFF FFFF.					
		TRL regis	ster. The c	counter saturates to 0x FFFF FFFF		
	CNT_C	-	1			
		TRL regis	ster. The c	counter saturates to 0x FFFF FFFF. Counter value, bits 31:16 Total number of octets in frames		
	RX_DUPLICATE_L	RX_DUPLICATE_L Reset: C RX_DUPLICATE_L Reset: C RX_DUPLICATE_H Reset: C RX_DUPLICATE_L Reset: C	RX_DUPLICATE_L Reset: 0 x 00 00 RX_DUPLICATE_L Reset: 0 x 00 00 RX_DUPLICATE_H Reset: 0 x 00 00 TX_OCTETS_L Reserved TX_OCTETS_L Reset: 0 x 00 00 TX_OCTETS_C Reset: 0 x 00 00	RX_DUPLICATE_L Reset: 0 x 00 00 RX Duplicate Low The value in this register is CNT_CTRL register. The of Bits RX_DUPLICATE_H Reset: 0 x 00 00 RX Duplicate High The value in this register is CNT_CTRL register. The of Bits RX_DUPLICATE_H Reset: 0 x 00 00 RX Duplicate High The value in this register is CNT_CTRL register. The of Bits Reserved Reserved TX_OCTETS_L Reset: 0 x 00 00 TX Octets Low The value in this register is CNT_CTRL register. The of Bits TX_OCTETS_H Reset: 0 x 00 00 TX 0 cotets Low TX_OCTETS_H Reset: 0 x 00 00		

¹⁰⁰ **V Five Years** Out

Address	Register	Descri	otion					
CNT+	TX_UNICAST_L	-	0 x 00 00					
0x0284			TX Unicast Low					
0/0201				eaister is	s updated after writing 1 to Capture bit in			
				-	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
		Bits	10 0.		Number of transmitted unicast frames.			
CNT+	TX_UNICAST_H	Reset. () x 00 00		Number of transmitted unleast numes.			
0x0286			ast High					
0,0200			-	·onistor is	s updated after writing 1 to Capture bit in			
				-	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
		Dits	15-0.	NO	Number of transmitted unicast frames.			
CNT+	TX	Pocot: () x 00 00		Number of transmitted unicast frames.			
0x0288	_BROADCAST_L		adcast Lo					
0x0200	_BROADCAST_L				undeted offer writing 1 to Conture bit in			
				-	s updated after writing 1 to Capture bit in counter saturates to 0x FFFF FFFF.			
		Bits	16L regis	RO				
		DIIS	15-0:	RU	Counter value, bits 15:0 Number of transmitted broadcast frames.			
		Dest			Number of transmitted broadcast frames.			
CNT +	TX) x 00 00					
0x028A	_BROADCAST_H	TX Broadcast High						
		The value in this register is updated after writing 1 to Capture bit in						
				1	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
0.17					Number of transmitted broadcast frames.			
CNT+	TX_MULTICAST_L		0 x 00 00					
0x028C			icast Low					
				•	s updated after writing 1 to Capture bit in			
		_	, v	1	counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 15:0			
					Number of transmitted multicast frames.			
					Does not include broadcast frames			
					counted in TX_BROADCAST_L/H.			
CNT+	TX_MULTICAST_H		0 x 00 00					
0x028E			icast Higł					
				-	s updated after writing 1 to Capture bit in			
			-		counter saturates to 0x FFFF FFFF.			
		Bits	15-0:	RO	Counter value, bits 31:16			
					Number of transmitted multicast frames.			
					Does not include broadcast frames			
					counted in TX_BROADCAST_L/H.			

Address	Register	Descri	ption						
CNT+	TX_HSRPRP_L	Reset:	0 x 00 00						
0x0290		TX HSF	TX HSR/PRP Frames Low						
		The val	ue in this	register	is updated after writing 1 to Capture bit in				
				-	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of HSR frames transmitted while				
					in HSR mode and number of PRP frames				
					transmitted while in PRP mode. The				
					counter does not count HSR frames in				
					non-HSR mode or PRP frames in non-				
					PRP mode. The counter is not reset when				
					changing modes.				
CNT+	TX HSRPRP H	Reset:	0 x 00 00						
0x0292			R/PRP Fra		ah				
0/0202					is updated after writing 1 to Capture bit in				
			CNT_CTRL register. The counter saturates to 0x FFFF FFFF.						
		Bits	15-0:	RO	Counter value, bits 31:16				
		Dito			Number of HSR frames transmitted while				
					in HSR mode and number of PRP frames				
					transmitted while in PRP mode. The				
					counter does not count HSR frames in				
					non-HSR mode or PRP frames in non-				
					PRP mode. The counter is not reset when				
					changing modes.				
CNT+	Reserved	Reserv	od		changing modes.				
0x0294	Reserved	Reserv	eu						
CNT+									
0x02BE									
CNT+		Desetu	0 x 00 00						
	PRIQ_DROP_L								
0x02C0		-	Priority Queue Drop Counter Low						
				-	is updated after writing 1 to Capture bit in				
			15-0:	1	counter saturates to 0x FFFF FFFF.				
		Bits	15-0:	RO	Counter value, bits 15:0				
					Number of frames dropped by this output				
					port because TX priority queue was full.				
					Note that a frame can be forwarded to				
					several ports, so one single frame can				
					increment the counter for more than one				
					port.				

Address	Register	Descri	otion							
CNT+	PRIQ_DROP_H	Reset: 0	0 x 00 00							
0x02C2		Priority	Queue D	rop Coun	ter High					
		The valu	ue in this	register is	s updated after writing 1 to Capture bit in					
		CNT_C	CNT_CTRL register. The counter saturates to 0x FFFF FFFF.							
		Bits	15-0:	RO	Counter value, bits 31:16					
					Number of frames dropped by this output					
					port because TX priority queue was full.					
					Note that a frame can be forwarded to					
					several ports, so one single frame can					
					increment the counter for more than one					
					port.					
CNT+	EARLY_DROP_L	Reset: () x 00 00							
0x02C4		Early Fr	ame Drop	o Counter	Low					
		The value in this register is updated after writing 1 to Capture bit in								
		CNT_CTRL register. The counter saturates to 0x FFFF FFFF.								
		Bits	15-0:	RO	Counter value, bits 15:0					
					Number of frames dropped by this output					
					port from TX priority queues because					
					internal memory was becoming full. Note					
					that a frame can be forwarded to several					
					ports, so one single frame can increment					
					the counter for more than one port.					
CNT+	EARLY_DROP_H	Reset: 0	0 x 00 00							
0x02C6		Early Fr	ame Drop	o Counter	^r High					
		The valu	ue in this	register is	s updated after writing 1 to Capture bit in					
		CNT_C	TRL regi	ster. The o	counter saturates to 0x FFFF FFFF.					
		Bits	15-0:	RO	Counter value, bits 31:16					
					Number of frames dropped by this output					
					port because internal memory was					
					becoming full. Note that a frame can be					
					forwarded to several ports, so one single					
					frame can increment the counter for more					
					than one port.					

Note that RS does not forward frames whose length is more than 1536 octets or under 64 octets (under 70 octets with HSR/PRP). Frames who came in with a VLAN tag and whose length was under 68 octets (under 74 octets with HSR/PRP) are padded to 64 octets (70 octets with HSR/PRP) when sent out without a VLAN tag.

6.10.5 Inbound Policy Registers

Inbound policy registers are presented in Table 36.

XRS7000 and XRS3000 User Manual, Version 1.3

Table 36. Inbound Policy Registers								
Address	Register	Descri	ption					
IPO +	ETH_ADDR0_CF	Reset:	0 x 00 00					
0x0000	G	Configuration for Ethernet address 0 (ETH_ADDR0) of inbound policy filter.						
		Bit	0:	R/W	Enable Enable this entry. The other bits in this register are functional only when this bit is set to 1.			
		Bit	1:	R/W	 Source/Destination Match Defines whether to compare the address in registers ETH_ADDR0_0ETH_ADDR0_2 to the source or to the destination MAC address of the incoming frame. 0 = Match to destination address 1 = Match to source address 			
		Bits	7-2:	R/W	Compared Length Defines how many bits from the start of the MAC addresses of the incoming frames are compared to the value in registers ETH_ADDRO_02. If the value is 48 the whole MAC address is compared. With value 1 only the unicast/multicast bit is compared (note that the bit order here is transmission order). With value 0 every frame matches. Values over 48 are reserved.			
		Bits	9-8:	RO	Reserved			
		Bit	10:	R/W	 No HSR-tag Do not add a HSR-tag to the frame even when output from HSR enabled port. In case of two IPO matches (source address match and destination address match) the information is taken from the second match. 			
		Bit	11:	R/W	No PRP-trailerDo not add a PRP-trailer to the frame evenwhen output from PRP enabled port.In case of two IPO matches (source addressmatch and destination address match) theinformation is taken from the second match.			

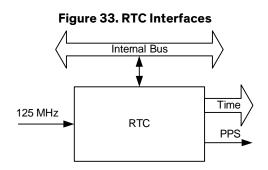
Table 36. Inbound Policy Registers

XRS7000 and XRS3000 User Manual, Version 1.3

V Five Years Out

Address	Register	Descri	ption		
		Bits	13-12:	R/W	New Priority If Preserve Priority bit = 0 the priority of the frame is set to this value. Overrides priority defined by VLAN PCP (in XRS3003 the default priority is 0). The lowest priority is 0, the highest is 3. In case of two IPO matches (source address match and destination address match) the
		Bit	14:	R/W	 information is taken from the second match. Preserve Priority 0 = Set priority of the frame to the value in "New Priority" bits. 1 = Do not alter priority of the frame In case of two IPO matches (source address match and destination address match) the information is taken from the second match.
IPO+		Bit	15: 0 x 00 00	RO	Reserved
0x0002	ETH_ADDRO_FW D_ALLOW		et address s allowed t 15-0:		forwarding. Defines to which ports the matching warded. Forward allow mask Bit 0 corresponds to port 0, bit 1 corresponds to port 1, and so on. 0 = Forwarding is not allowed to this port 1 = Forwarding is allowed to this port.
IPO + 0x0004	ETH_ADDRO_FW D_MIRROR	Etherne	D x 00 00 et address are mirror 15-0:		port. Defines to which ports the matching Forward mirror mask Bit 0 corresponds to port 0, bit 1 corresponds to port 1, and so on. 0 = Frame is not mirrored to this port 1 = Frame is mirrored to this port. If the corresponding allow bit is 1, also duplicate frames are mirrored. If the corresponding allow bit is 0 HSR/PRP duplicate discard is applied to mirrored frames and duplicates
IPO+ 0x0006	Reserved	Reserve	ed		are not mirrored.

V Five Years Out


Address	Register	Descrip	Description							
IPO +	ETH_ADDR0_0	Reset: 0	0 x 00 00							
0x0008		Etherne	t address	0 part 0.	First part of the Ethernet address ETH_ADDR0.					
		Bits	7-0:	R/W	1st octet (<u>XX</u> :XX:XX:XX:XX)					
		Bits	15-8:	R/W	2nd octet (XX:XX:XX:XX:XX)					
IPO +	ETH_ADDR0_1	Reset: 0) x 00 00		1					
0x000A		Etherne	t address	0 part 1.	Second part of the Ethernet address					
		ETH_ADDRO.								
		Bits	7-0:	R/W	3rd octet (XX:XX: <u>XX</u> :XX:XX)					
		Bits	15-8:	R/W	4th octet (XX:XX:XX:XX:XX)					
IPO+	ETH_ADDR0_2	Reset: 0	x 00 00		1					
0x000C		Etherne	t address	0 part 2.	Third part of the Ethernet address					
		ETH_A	DDR0.							
		Bits	7-0:	R/W	5th octet (XX:XX:XX:XX: <u>XX</u> :XX)					
		Bits	15-8:	R/W	6th octet (XX:XX:XX:XX:XX:XX)					
IPO+	Reserved	Reserve	d	1						
0x000E										
IPO+										
0x001E										
IPO +	ETH_ADDR1_CF	Etherne	Ethernet address 1 filter configuration. See ETH_ADDR0_CFG.							
0x0020	G									
IPO +	ETH_ADDR1_FW	Etherne	Ethernet address 1 allow forwarding. See ETH_ADDR0_FWD_ALLOW.							
0x0022	D_ALLOW									
IPO +	ETH_ADDR1_FW	Etherne	t address	1 mirror	port. See ETH_ADDR0_FWD_MIRROR.					
0x0024	D_MIRROR									
IPO+	Reserved	Reserve	ed							
0x0026										
IPO +	ETH_ADDR1_0	Etherne	t address	1 part 0.	See ETH_ADDR0_0.					
0x0028										
IPO +	ETH_ADDR1_1	Etherne	t address	1 part 1.	See ETH_ADDR0_1.					
0x002A										
IPO +	ETH_ADDR1_2	Etherne	t address	1 part 2.	See ETH_ADDR0_2.					
0x002C										
IPO+	Reserved	Reserve	ed							
0x002E										
IPO+										
0x003E										
IPO +	ETH_ADDR2_CF	Etherne	t address	2 filter co	onfiguration. See ETH_ADDR0_CFG.					
0x0040	G									
IPO +	ETH_ADDR15_2	Etherne	t address	15 part 2	2. See ETH_ADDR0_2.					
0x01EC										

7. REAL-TIME CLOCK (RTC)

RTC (Real-Time Clock) keeps track of the internal time of XRS7004/XRS7003/XRS3003. RTC provides clock time for the other blocks including RS and TS. RTC provides also a Pulse per Second (PPS) output that can be used for synchronizing other devices. The time format of RTC is compatible with the time format defined in IEEE1588 standard.

The time is presented in seconds and nanoseconds and there are 48 bits for seconds and 30 bits for nanoseconds.

The internal implementation is an accumulator that counts nanoseconds. Seconds value is updated and nanoseconds value wraps around always when nanoseconds value exceeds 1 000 000 000 (corresponds to one second). Because of this, the nanoseconds value can never be more than 30 bits in length.

7.1 Registers

Registers of RTC are presented in Table 37.

Address	Register	Descri	Description					
0x0000	Reserved	Reserve	Reserved					
0x1002								
0x1004	CUR_NSEC0	Reset: (Reset: 0 x 00 00					
		Current	Current time nanoseconds. Updated with Read Time command (see					
		TIME_0	TIME_CMD register).					
		Bits	15-0:	RO	Nanoseconds			
					Nanoseconds part of the current time, bits			
					15:0.			

Table 37. RTC Registers

XRS7000 and XRS3000 User Manual, Version 1.3

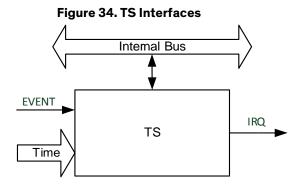
Five Years Out

Address	Register	Descri	ption					
0x1006	CUR_NSEC1	Reset: (Reset: 0 x 00 00					
		Current	Current time nanoseconds. Updated with Read Time command (see					
		TIME_0	TIME_CMD register).					
		Bits	13-0:	RO	Nanoseconds			
					Nanoseconds part of the current time, bits			
					29:16.			
		Bits	15-14:	RO	Reserved			
0x1008	CUR_SEC0	Reset: (Reset: 0 x 00 00					
		Current	Current time seconds. Updated with Read Time command (see					
		TIME_0	TIME_CMD register).					
		Bits	15-0:	RO	Seconds			
					Seconds part of the current time, bits 15:0.			
0x100A	CUR_SEC1	Reset: (Reset: 0 x 00 00					
		Current	Current time seconds. Updated with Read Time command (see					
		TIME_0	TIME_CMD register).					
		Bits	15-0:	RO	Seconds			
					Seconds part of the current time, bits			
		31:16.						
0x100C	CUR_SEC2		Reset: 0 x 00 00					
			Current time seconds. Updated with Read Time command (see					
		_	TIME_CMD register).					
		Bits	15-0:	RO	Seconds			
					Seconds part of the current time, bits			
					47:32.			
0x100E	Reserved	Reserve						
0x1010	TIME_CC0		Reset: 0 x 00 00					
			Clock cycle counter. Free-running counter running at 125 MHz. Updated					
			with Read Time command (see TIME_CMD register).					
		Bits	15-0:	RO	Free-running clock cycle counter			
					Clock cycles since the reset, bits 15:0 The			
					value wraps around automatically. Time			
					adjustments have no effect on this value.			
0x1012	TIME_CC1		Reset: 0 x 00 00					
			Clock cycle counter. Free-running counter running at 125 MHz. Updated					
			with Read Time command (see TIME_CMD register). Bits 15-0: RO Free-running clock cycle counter					
		DITS	15-0:	RO	Free-running clock cycle counter			
					Clock cycles since the reset, bits 31:16			
					The value wraps around automatically.			
					Time adjustments have no effect on this			
					value.			

Address	Register	Descri	Description							
0x1014	TIME_CC2	Reset:	Reset: 0 x 00 00							
		Clock c	Clock cycle counter. Free-running counter running at 125 MHz. Updated							
		with Re	with Read Time command (see TIME_CMD register).							
		Bits	15-0:	RO	Free-running clock cycle counter					
					Clock cycles since the reset, bits 47:32					
					The value wraps around automatically.					
					Time adjustments have no effect on this					
					value.					
0x1016	Reserved	Reserv	ed							
0x101E										
0x1020	STEP_SIZE0	Reset:	0 x 00 00							
		Step siz	ze. The va	lue adde	d to the internal accumulator at the frequency					
		of 125	of 125 MHz. Defines the speed of the clock time.							
		Bits	15-0:	R/W	Subnanoseconds					
					Subnanoseconds step size, bits 15:0. The					
					new value is taken into use with Adjust Step					
					command (see TIME_CMD register).					
0x1022	STEP_SIZE1	Reset: 0 x 00 00								
		Step siz	Step size. The value added to the internal accumulator at the frequency							
		of 125	of 125 MHz. Defines the speed of the clock time.							
		Bits	15-0:	R/W	Subnanoseconds					
					Subnanoseconds step size, bits 31:16. The					
					new value is taken into use with Adjust Step					
					command (see TIME_CMD register).					
0x1024	STEP_SIZE2		0 x 00 08							
		•			d to the internal accumulator at the frequency					
			1		speed of the clock time.					
		Bits	3-0:	R/W	Nanoseconds					
					Nanoseconds step size. The new value is					
					taken into use with Adjust Step command					
					(see TIME_CMD register).					
		Bits	15-4:	RO	Reserved					
0x1026	Reserved	Reserv	ed							
0x1032										

Address	Register	Description								
0x1034	ADJUST_NSEC0	Reset: C	0 x 00 00							
		Adjust time (nanoseconds part). This value is added to nanoseconds part								
		with Adjust Time command (see TIME_CMD register). The nanosecond								
		adjustm	ent value	is unsign	ed and therefore always positive. To go					
		backwa	rds use ne	egative se	econds adjustment (ADJUST_SEC registers).					
		For exa	mple, to g	o 500 ns	backwards, adjust 999 999 500 ns forward					
		and one	second b	ackward	. The nanosecond adjustment is not allowed					
		to be m	ore than 9	99 999 9	999.					
		Bits	15-0:	R/W	Nanoseconds, bits 15:0.					
0x1036	ADJUST_NSEC1	Reset: C) x 00 00							
		Adjust t	ime (nano	seconds	part). This value is added to nanoseconds part					
		-			d (see TIME_CMD register). The nanosecond					
		adjustm	Ient value	is unsign	ed and therefore always positive. To go					
				•	econds adjustment (ADJUST_SEC registers).					
				-	backwards, adjust 999 999 500 ns forward					
					. The nanosecond adjustment is not allowed					
			ore than 9		-					
		Bits	13-0:	R/W	Nanoseconds, bits 29:16.					
		Bits	15-	RO	Reserved					
			14:	_						
0x1038	ADJUST_SEC0	Reset: 0 x 00 00								
		Adjust time (seconds part). This value is added to seconds part with								
		Adjust Time command (see TIME_CMD register). The seconds								
		adjustment value is signed and can therefore be also negative. To go								
		backwa	rds, use tv	wo's com	plement arithmetics.					
		Bits	15-0:	R/W	Seconds, bits 15:0.					
0x103A	ADJUST_SEC1	Reset: C	x 00 00	1	l					
		Adjust t	Adjust time (seconds part). This value is added to seconds part with							
		Adjust Time command (see TIME_CMD register). The seconds								
		adjustm	ent value	is signed	and can therefore be also negative. To go					
		backwa	rds, use tv	wo's com	plement arithmetics.					
		Bits	15-0:	R/W	Seconds, bits 31:16.					
0x103C	ADJUST_SEC2	Reset: C) x 00 00		I					
		Adjust time (seconds part). This value is added to seconds part with								
		Adjust Time command (see TIME_CMD register). The seconds								
		adjustment value is signed and can therefore be also negative. To go								
		-		-	plement arithmetics.					
		Bits	15-0:	R/W	Seconds, bits 47:32.					
					The highest bit (bit 47) is the sign.					
0x103E	Reserved	Reserve	ed	1						

Address	Register	Description							
0x1040	TIME_CMD	Reset: 0 x 00 00							
		Time co	Time command register.						
		Bit	0:	R/SC	Adjust Time				
					Causes (for one time only) the values in				
					ADJUST_NSEC and ADJUST_SEC				
					registers to be added to the internal time				
					(accumulator) instead of the values in				
					STEP_SIZE registers. Causes the clock				
					time to jump forward or backward.				
		Bit	1:	R/SC	Adjust Step				
					Take the new values in STEP_SIZE				
					registers into use. Adjusting the step				
					makes the clock run faster or slower.				
		Bit	2:	R/SC	Read Time				
					Updates the CUR_NSEC, CUR_SEC and				
					TIME_CC registers with the values in the				
					accumulator (current time).				
		Bits	15-3:	RO	Reserved				


¹¹¹ V Five Years Out

8. TIME STAMPER (TS)

Time Stamper (TS) time stamps external input events. This functionality can be used for transferring the internal clock time of XRS7004/7003 to other devices and/or systems. It is also possible to use TS for synchronizing XRS7004/7003 to an external time source. XRS3003 does not have TS functionality.

TS timestamps rising edges of its EVENT input and stores the timestamps into its internal registers where the user can read them. Input signal frequencies up to 25 MHz are supported. One typical use of TS is synchronizing to a 1PPS signal.

Figure 34 presents the interfaces of TS.

The time interface (see Figure 34) provides the current time information for TS as TS does not have internal timekeeping functionality. The Time Interface is connected to the RTC (Chapter 7). The IRQ line can be connected to an IRQ input of an attached CPU so that the CPU does not necessarily need to poll the registers of TS.

8.1 Registers

Registers of TS are presented in Table 38. XRS3003 does not have TS functionality so the register area is reserved in XRS3003.

	Table 38. TS Registers (not in XRS3003)							
Address	Address Register Description							
0x0000	Reserved	Reserved						
OxOFFE								

Address	Register	Descri							
0x1000	TS_CTRL	Reset: 0 x 00 00							
		Bit	0:	R/SC	Get Timestamp Writing 1 to this bit enables recording timestamp of the next event (rising edge) to registers TS_SEC, TS_NSEC and TS_SNSEC. Also the amount of events (rising edges) arrived so far is written to register PCNT. This bit is cleared when the timestamp and the counter value are available.				
		Bits	15-1:	RO	Reserved				
0x1002 0x1006	Reserved	Reserv							
0x1008	INT_MASK	Reset (An exte		•	ivated when an Interrupt Mask bit is set and the tatus bit is 1. Time Stamp Indicates that an event (rising edge) has arrived and a time stamp and pulse counter value are recorded to registers TS_SEC, TS_NSEC, TS_SNSEC and PCNT <i>Reserved</i>				
0x100A 0x100E	Reserved	Reserv	ed	·					
0x1010	INT_STATUS	Reset (An exte corresp	oonding Ir	nterrupt M	ivated when an Interrupt Status bit is set and the ask bit is 1. The interrupt status bit in this ndent from the corresponding Interrupt Mask Time Stamp Indicates that an event (rising edge) has arrived and a time stamp and pulse counter value are recorded to registers TS_SEC, TS_NSEC, TS_SNSEC and PCNT <i>Reserved</i>				
0x1012	Reserved	Reserv			10301764				
0x1012 0x1102	Neserveu	Neselv	Cu						

Address	Register	Descri	Description						
0x1104	TS_NSEC0	Time St	amp Nano	oseconds					
		Reset: (Reset: 0 x 00 00						
		Update	d only wit	h "Get Tin	nestamp" command (see TS_CTRL register).				
		When "	Get Times	tamp" bit	in TS_CTRL register is 1 the value in this				
		register	r is not val	id.					
		Bits	15-0:	RO	Nanoseconds				
					Nanoseconds part of the time of the				
					previous event, bits 15:0.				
0x1106	TS_NSEC1	Time St	amp Nand	seconds					
		Reset: (0 x 00 00						
		Update	d only wit	h "Get Tin	nestamp" command (see TS_CTRL register).				
		When "	Get Times	tamp" bit	in TS_CTRL register is 1 the value in this				
		register	r is not val	id.					
		Bits	13-0:	RO	Nanoseconds				
					Nanoseconds part of the time of the				
					previous event, bits 29:16.				
		Bits	15-14:	RO	Reserved				
0x1108	TS_SEC0	Time Stamp Seconds							
		Reset: (Reset: 0 x 00 00						
		Update	Updated only with "Get Timestamp" command (see TS_CTRL register When "Get Timestamp" bit in TS_CTRL register is 1 the value in this						
		When "							
		register is not valid.							
		Bits	15-0:	RO	Seconds				
					Seconds part of the time of the previous				
					event, bits 15:0.				
0x110A	TS_SEC1	Time St	amp Seco	onds					
		Reset: (0 x 00 00						
		Update	d only wit	h "Get Tin	nestamp" command (see TS_CTRL register).				
		When "	Get Times	tamp" bit	in TS_CTRL register is 1 the value in this				
		register	r is not val	id.					
		Bits	15-0:	RO	Seconds				
					Seconds part of the time of the previous				
					event, bits 31:16.				
0x110C	TS_SEC2	Time St	amp Seco	onds					
		Reset: (Reset: 0 x 00 00						
		Updated only with "Get Timestamp" command (see TS_CTRL register).							
		When "	Get Times	tamp" bit	in TS_CTRL register is 1 the value in this				
		register	r is not val	id.					
		Bits	15-0:	RO	Seconds				
					Seconds part of the time of the previous				
					event, bits 47:32.				

Address	Register	Descri	ption					
0x110E	Reserved	Reserve	Reserved					
0x1110	PCNT0	Pulse C	ounter					
		Reset: (0 x 00 00					
		Update	d only wit	h "Get Tim	estamp" command (see TS_CTRL register).			
		When "	Get Times	stamp" bit	in TS_CTRL register is 1 the value in this			
		register	r is not val	id.				
		Bits	15-0:	RO	Pulse Counter			
					Value in the free running 32 bit counter that			
					counts incoming events (rising edges). This			
					counter can be used for finding out how			
					many events there has been between			
					certain Time Stamp captures. Useful with			
					fast input signals. Bits 15:0.			
0x1112	PCNT1	Pulse C	Pulse Counter					
		Reset: (0 x 00 00					
		Update	d only wit	h "Get Tim	estamp" command (see TS_CTRL register).			
		When "	Get Times	stamp" bit	in TS_CTRL register is 1 the value in this			
		register	r is not val	id.				
		Bits	15-0:	RO	Pulse Counter			
					Value in the free running 32 bit counter that			
					counts incoming events (rising edges). This			
					counter can be used for finding out how			
					many events there has been between			
					certain Time Stamp captures. Useful with			
					fast input signals. Bits 31:16.			

9. GENERAL-PURPOSE IO (GPIO)

With the GPIO block the user can control the functionality of the General Purpose Input/Output pins of the chip. Each GPIO pin can be configured to be either an input or an output.

9.1 Registers

The register map is presented in Table 39.

Address Register Description									
0x0000	Reserved	Reserv	Reserved						
0x0FFE									
0x1000	CONFIG0	Reset:	Reset: 0 x 00 00						
		Genera	General Purpose Input/Output Configuration						
		Bits	1-0:	R/W	Configuration of GPIO pin 0				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	3-2:	R/W	Configuration of GPIO pin 1				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	5-4:	R/W	Configuration of GPIO pin 2				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	7-6:	R/W	Configuration of GPIO pin 3				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	9-8:	R/W	Configuration of GPIO pin 4				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				

Table 39. GPIO Block Register Map

XRS7000 and XRS3000 User Manual, Version 1.3

¹¹⁶ Five Years Out

Address	Register	Descri	Description						
		Bits	11-10:	R/W	Configuration of GPIO pin 5				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	13-12:	R/W	Configuration of GPIO pin 6				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	15-14:	R/W	Configuration of GPIO pin 7				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
0x1002	INPUT_	Reset:	0 x 00 00	1					
	STATUS0	Genera	General Purpose Input Status.						
		Bits	1-0:	RO	Status of GPIO pin 0. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				
		Bits	3-2:	RO	Status of GPIO pin 1. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				
		Bits	5-4:	RO	Status of GPIO pin 2. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				
		Bits	7-6:	RO	Status of GPIO pin 3. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				

Address	Register	Descri	ption		
_		Bits	9-8:	RO	Status of GPIO pin 4. Valid only when
					configured as input.
					00 = low
					01 = high
					10 = reserved
					11 = reserved
		Bits	11-10:	RO	Status of GPIO pin 5. Valid only when
					configured as input.
					00 = low
					01 = high
					10 = reserved
					11 = reserved
		Bits	13-12:	RO	Status of GPIO pin 6. Valid only when
					configured as input.
					00 = low
					01 = high
					10 = reserved
					11 = reserved
		Bits	15-14:	RO	Status of GPIO pin 7. Valid only when
					configured as input.
					00 = low
					01 = high
					10 = reserved
					11 = reserved
0x1004	CONFIG1	Reset: (00 00 x C		
		Genera	l Purpose	Input/O	utput Configuration
		Bits	1-0:	R/W	Configuration of GPIO pin 8
					00 = Input
					01 = reserved
					10 = Output, driven low
					11 = Output, driven high
		Bits	3-2:	R/W	Configuration of GPIO pin 9
		Bits	5-4:	R/W	Configuration of GPIO pin 10
		Bits	7-6:	R/W	Configuration of GPIO pin 11
		Bits	9-8:	R/W	Configuration of GPIO pin 12
		Bits	11-10:	R/W	Configuration of GPIO pin 13
		Bits	13-12:	R/W	Configuration of GPIO pin 14
		Bits	15-14:	R/W	Configuration of GPIO pin 15

Address	Register	Descri	Description						
0x1006	INPUT_	Reset:	Reset: 0 x 00 00						
	STATUS1	Genera	General Purpose Input Status.						
		Bits	Bits 1-0:		Status of GPIO pin 8. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				
		Bits	3-2:	RO	Status of GPIO pin 9				
		Bits	5-4:	RO	Status of GPIO pin 10				
		Bits	7-6:	RO	Status of GPIO pin 11				
		Bits	9-8:	RO	Status of GPIO pin 12				
		Bits	11-10:	RO	Status of GPIO pin 13				
		Bits	13-12:	RO	Status of GPIO pin 14				
		Bits	15-14:	RO	Status of GPIO pin 15				
0x1008	CONFIG2	Reset:	Reset: 0 x 00 00 General Purpose Input/Output Configuration						
		Genera							
		Bits	1-0:	R/W	Configuration of GPIO pin 16				
					00 = Input				
					01 = reserved				
					10 = Output, driven low				
					11 = Output, driven high				
		Bits	3-2:	R/W	Configuration of GPIO pin 17				
		Bits	5-4:	R/W	Configuration of GPIO pin 18				
		Bits	7-6:	R/W	Configuration of GPIO pin 19				
		Bits	15-8:	RO	Reserved				
0x100A	INPUT_	Reset:	00 00 x C	1					
	STATUS2	Genera	l Purpose	Input Sta	atus.				
		Bits	1-0:	RO	Status of GPIO pin 16. Valid only when				
					configured as input.				
					00 = low				
					01 = high				
					10 = reserved				
					11 = reserved				
		Bits	3-2:	RO	Status of GPIO pin 17				
		Bits	5-4:	RO	Status of GPIO pin 18				
		Bits	7-6:	RO	Status of GPIO pin 19				
		Bits	15-8:	RO	Reserved				

¹¹⁹ V Five Years Out

10. ELECTRICAL SPECIFICATION

10.1 Absolute Maximum Ratings

Table 40. Absolute Maximum Ratings, EQFP144 Package

Symbol	Parameter	Min	Max	Unit
V _{cc}	Supply Voltage for core and input and output buffers	-0.5	3.9	V
V_{CC_PLL}	Supply Voltage for internal PLLs	-0.5	3.9	V
Vi	DC input voltage	-0.5	4.12	V
I _{OUT}	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

Table 41. Absolute Maximum Ratings, FBGA256 Package

Symbol	Parameter	Min	Max	Unit
V _{cc}	Supply voltage for core	-0.5	1.63	V
V_{CC_PLL}	1.2V supply voltage for internal PLLs	-0.5	1.63	V
V _{CCA}	2.5V supply voltage for internal PLLs	-0.5	3.41	V
V _{CCIO33}	Supply voltage for 3.3V input and output buffers	-0.5	3.9	V
V _{CCIO25}	Supply voltage for 2.5V input and output buffers	-0.5	3.9	V
V _{I33}	DC input voltage for 3.3V IO	-0.5	4.12	V
V ₁₂₅	DC input voltage for 2.5V IO	-0.5	4.12	V
lout	DC output current per pin	-25	25	mA
T _{STG}	Storage temperature	-65	150	°C
TJ	Operating junction temperature	-40	125	°C

10.2 Recommended Operating Conditions

Table 42. Recommended Operating Conditions, EQFP144 Package

Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Supply voltage for core and input and output	3.135	3.3	3.45	V
	buffers				
$V_{\text{CC}_{\text{PLL}}}$	Supply voltage for internal PLLs	3.135	3.3	3.465	V
VI	DC input voltage	-0.3	-	3.6	V
Vo	Output voltage	0	-	V _{cc}	V
TJ	Operating junction temperature	-40	-	100	°C
t _{RAMP}	Power supply ramp time	200 µs	-	3 ms	-

Table 43. Recommended Operating Conditions, FBGA256 Package

Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Supply voltage for core	1.15	1.2	1.25	V

Electrical Specification

V_{CC_PLL}	1.2V supply voltage for internal PLLs	1.15	1.2	1.25	V
V _{CCA}	2.5V supply voltage for internal PLLs	2.375	2.5	2.625	V
V _{ссюзз}	Supply voltage for 3.3V input and output buffers	3.135	3.3	3.465	V
V _{CCI025}	Supply voltage for 2.5V input and output buffers	2.375	2.5	2.625	V
V ₁₃₃	DC input voltage, 3.3V IO	-0.3	-	3.6	V
V ₁₂₅	DC input voltage, 2.5V IO	-0.3	-	2.8	V
Vo	Output voltage	0	-	V _{CCIO}	V
T	Operating junction temperature	-40	-	100	°C
t _{RAMP}	Power supply ramp time	200 µs	-	3 ms	-

10.3 Package Thermal Information

Table 44. Thermal Resistance, EQFP144 Package

Symbol	Parameter	Тур	Unit
heta JA	Thermal resistance, junction to ambient,	21.1	°C/W
	no air flow		
heta ja	Thermal resistance, junction to ambient,	17.3	°C/W
	air flow 0.5 m/s		
heta JA	Thermal resistance, junction to ambient,	16.2	°C/W
	air flow 1.0 m/s		
heta JA	Thermal resistance, junction to ambient,	13.9	°C/W
	air flow 2.0 m/s		
$ heta$ _JC	Thermal resistance, junction to case	5.5	°C/W
$ heta$ _B	Thermal resistance, junction to board	7.6	°C/W

Table 45. Thermal Resistance, FBGA256 Package

Symbol	Parameter	Тур	Unit
heta JA	Thermal resistance, junction to ambient,	24.3	°C/W
	no air flow		
heta JA	Thermal resistance, junction to ambient,	21.5	°C/W
	air flow 0.5 m/s		
heta JA	Thermal resistance, junction to ambient,	19.6	°C/W
	air flow 1.0 m/s		
heta JA	Thermal resistance, junction to ambient,	18.0	°C/W
	air flow 2.0 m/s		
θ _{JC}	Thermal resistance, junction to case	4.5	°C/W
θ јв	Thermal resistance, junction to board	12.1	°C/W

XRS7000 and XRS3000 User Manual, Version 1.3

V **Five Years** Out

10.4 DC Electrical Characteristics

10.4.1 Current consumption

Table 46. Current Consumption, XRS7004E

Symbol	Parameter	Тур	Unit
I _{vcc}	Total current consumption, 3.3V, full traffic all ports	0.73	А
+I _{VCC_PLL}			

Table 47. Current Consumption, XRS7003E

Symbol	Parameter	Тур	Unit
I _{vcc}	Total current consumption, 3.3V, full traffic all ports	0.62	А
+I _{VCC_PLL}			

Table 48. Current Consumption, XRS7004F

Symbol	Parameter	Тур	Unit
Ivcc	Current consumption, VCC (1.2V), full traffic all ports	0.72	A
IVCC_PLL	Current consumption, VCC_PLL (1.2V), full traffic all ports	0.02	A
I _{VCCA}	Current consumption, VCCA (2.5V), full traffic all ports	0.03	А
I _{VCCIO33}	Current consumption, VCCIO33, full traffic all ports	0.02	А
I _{VCCIO25}	Current consumption, VCCIO25, full traffic all ports	0.01	А

Table 49. Current Consumption, XRS7003F

Symbol	Parameter	Тур	Unit
Ivcc	Current consumption, VCC (1.2V), full traffic all ports	0.61	A
Ivcc_pll	Current consumption, VCC_PLL (1.2V), full traffic all ports	0.02	A
IVCCA	Current consumption, VCCA (2.5V), full traffic all ports	0.03	A
I _{VCCIO33}	Current consumption, VCCIO33, full traffic all ports	0.02	A
I _{VCCIO25}	Current consumption, VCCIO25, full traffic all ports	0.01	A

Table 50. Current Consumption, XRS3003F

Symbol	Parameter	Тур	Unit
Ivcc	Current consumption, VCC (1.2V), full traffic all ports	0.49	A
IVCC_PLL	Current consumption, VCC_PLL (1.2V), full traffic all ports	0.02	A
VCCA	Current consumption, VCCA (2.5V), full traffic all ports	0.03	A
I _{VCCIO33}	Current consumption, VCCIO33, full traffic all ports	0.02	A
VCCIO25	Current consumption, VCCIO25, full traffic all ports	0.01	A

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

10.4.2 I/O Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Low level input voltage	-0.3	-	0.8	V
VIH	High level input voltage	1.7	-	3.6	V
V _{OL}	Low level output voltage	0	-	0.45	V
V _{OH}	High level output voltage	2.4	-	V _{cc}	V
CIO	Input capacitance	6	8	9	pF
l _i	Input pin leakage current (V1=0VVcc)	-10	-	10	μA
R _{PU}	Resistance of internal pull-up resistors	7	12	18	kΩ

Table 51. I/O Characteristics, EQFP144 Package

Table 52. I/O Characteristics, FBGA256 Package

Symbol	Parameter	Min	Тур	Max	Unit
V _{IL33}	Low level input voltage, 3.3V IO	-0.3	-	0.8	V
V_{IL25}	Low level input voltage, 2.5V IO	-0.3	-	0.7	V
V _{IH33}	High level input voltage, 3.3V IO	1.7	-	3.6	V
V _{IH25}	High level input voltage, 2.5V IO	1.7	-	2.8	V
V _{OL33}	Low level output voltage, 3.3V IO	0	-	0.45	V
V_{OL25}	Low level output voltage, 2.5V IO	0	-	0.4	V
V _{OH33}	High level output voltage, 3.3V IO	2.4	-	V _{CCIO33}	V
V_{OH25}	High level output voltage, 2.5V IO	2.0	-	V _{CCI025}	V
CIO	Input capacitance	6	8	9	pF
l _i	Input pin leakage current (V1=0VVCCIO)	-10	-	10	μA
R _{PU}	Resistance of internal pull-up resistors	7	12	18	kΩ

10.5 Interface Timing

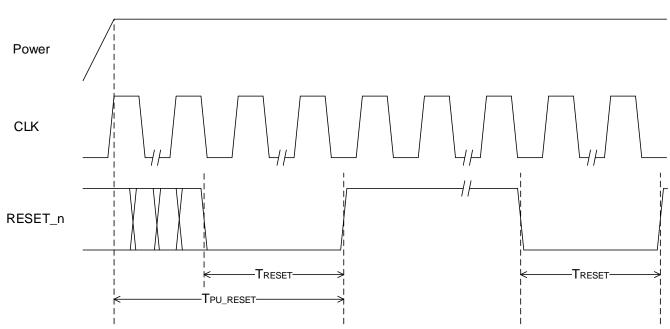

10.5.1 Input Clock Timing

Table 53. Input Clock Timing (CLK)

Symbol	Parameter	Min	Тур	Max	Unit
f _{CLK}	CLK clock frequency	25	25	25	MHz
		-50 ppm		+ 50 ppm	
$f_{\text{CLK}_{\text{DUTY}}}$	CLK clock duty cycle	40	50	60	%
T _{J_CC}	CLK clock cycle-to-cycle jitter	-	-	200	ps
T _{J_RMS}	CLK RMS jitter 12 kHz to 20 MHz	-	-	3	ps

10.5.2 Reset Timing

Figure 35. Reset Timing

Table 54. Reset Timing

Symbol	Parameter	Min	Тур	Max	Unit
T _{RESET}	Reset pulse width	1	-	-	μs
T _{PU_RESET}	Time from power-up to reset deasserted	300	-	-	ms

10.5.3 RGMII Timing

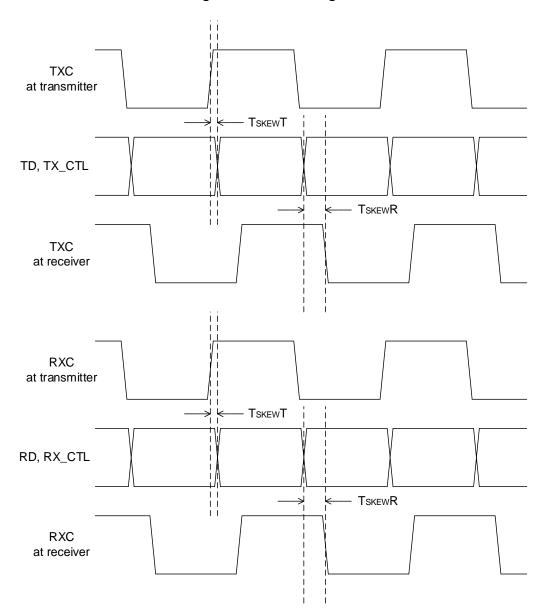
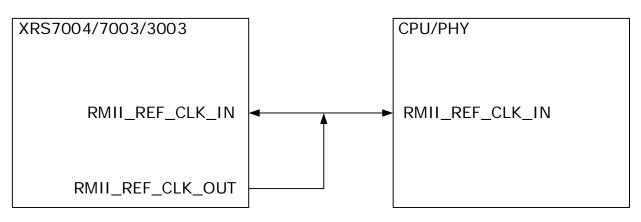


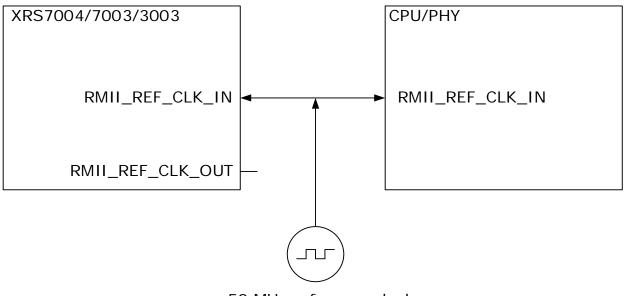
Figure 36. RGMII Timing

Table 55. RGMII Timing

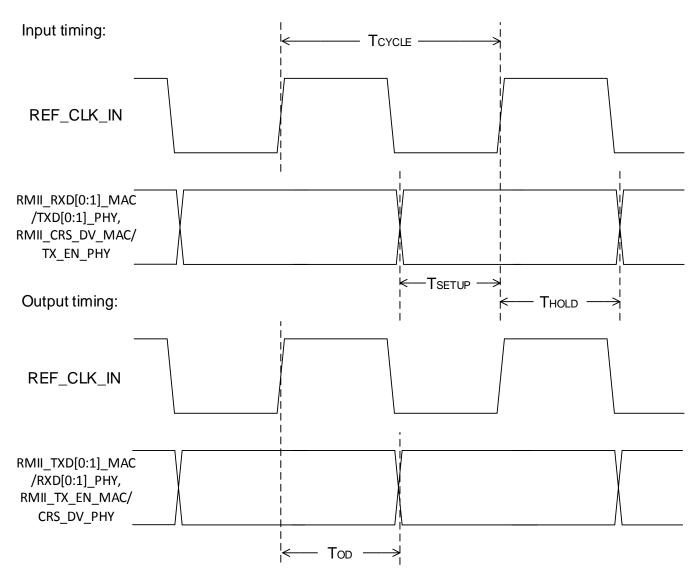
Symbol	Parameter	Min	Тур	Max	Unit
T _{SKEW} T	Data to clock output at transmitter	-500	0	500	ps
T _{SKEW} R	Data to clock input at receiver	1	-	2.6	ns

Note that the PCB design needs to add 1.5 ns to 2.1 ns more delay to the RGMII clock signals unless there are adjustable clock delays in the other end (PHY).


XRS7000 and XRS3000 User Manual, Version 1.3


Five Years Out

10.5.4 RMII Timing



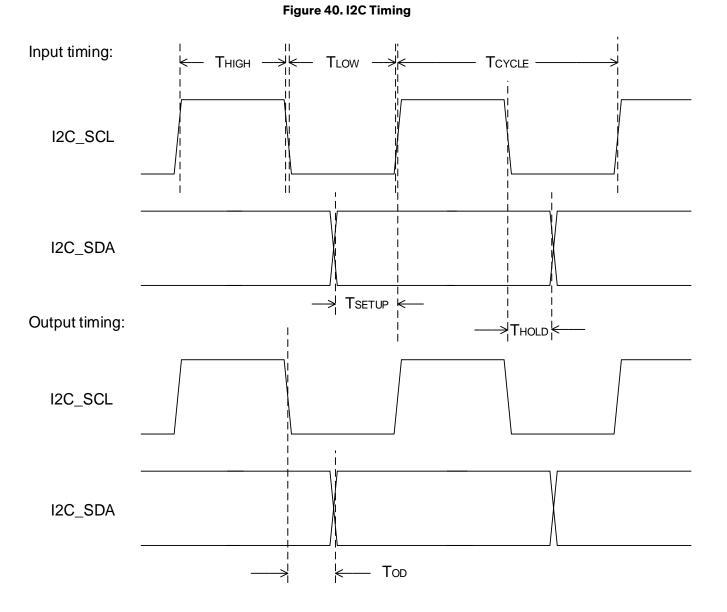
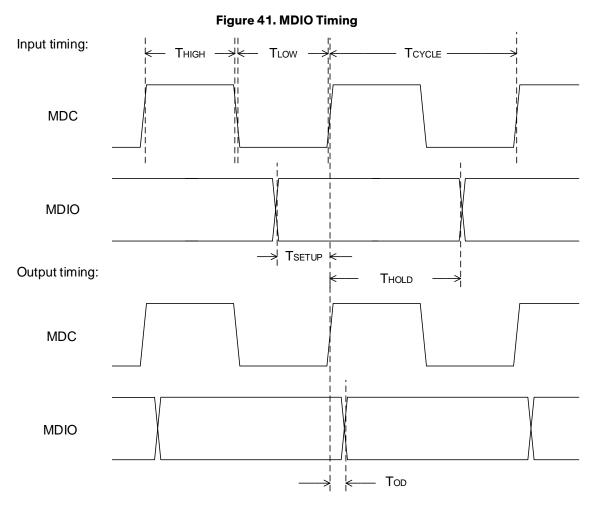


Table 56. RMII Timing

Symbol	Parameter	Min	Тур	Max	Unit
T _{CYCLE}	50 MHz Reference clock period	-	20	-	ns
T _{SETUP}	Input data setup time	2	-	-	ns
T _{HOLD}	Input data hold time	2	-	-	ns
T _{OD}	Output Delay, Time from rising edge of	4	-	13	ns
	clock to output data valid				

10.5.5 I2C Timing

Table 57. I2C Timing


Symbol	Parameter	Min	Тур	Max	Unit
T _{HIGH}	Clock high period	600	-	-	ns
T _{LOW}	Clock low period	600	-	-	ns
T _{CYCLE}	Clock cycle period	2500	-	-	ns
T _{SETUP}	Input data setup time	50	-	-	ns
T _{HOLD}	Input data hold time	0	-	-	ns
T _{OD}	Output Delay, Time from falling edge of	100	180	260	ns
	clock to output data valid				

XRS7000 and XRS3000 User Manual, Version 1.3

Five Years Out

10.5.6 MDIO Timing

Table 58. MDIO Timing

Symbol	Parameter	Min	Тур	Max	Unit
T _{HIGH}	Clock high period	150	-	-	ns
T _{LOW}	Clock low period	150	-	-	ns
T _{CYCLE}	Clock cycle period	400	-	-	ns
T _{SETUP}	Input data setup time	10	-	-	ns
T _{HOLD}	Input data hold time	10	-	-	ns
T _{OD}	Output Delay, Time from rising edge of	10	-	100	ns
	clock to output data valid				

11. MECHANICAL SPECIFICATION

11.1 EQFP144 Package

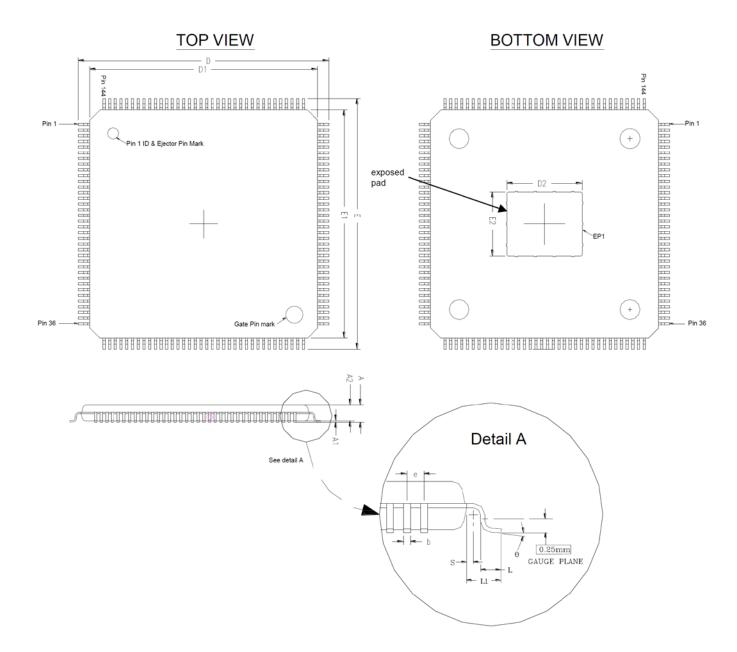

Package information is presented in Table 59 and package dimensions in Table 60 and Figure 42.

Table 59. EQFP144 Package Information

Leadframe material:	Copper
Lead finish (plating):	Matte Sn
JEDEC outline reference:	MS-026 variation: BFB-HD
Lead coplanarity:	0.08 mm
Weight:	1.4 g (Тур.)

Figure 42. EQFP144 Package Dimensions

Symbol	Min	Nom	Max		
A	1.45	1.55	1.65		
A1	0.05	0.10	0.15		
A2	1.30	1.45	1.60		
D		22.00 BSC			
D1		20.00 BSC			
D2	8.78	8.93	9.08		

Table 60. EQFP144 Package Dimensions in Millimeters

Mechanical Specification

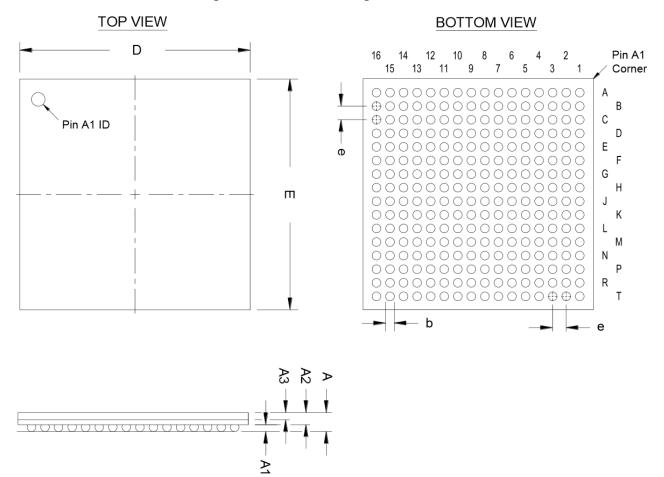
Symbol	Min	Nom	Мах	
E		22.00 BS	С	
E1		20.00 BS	С	
E2	8.55	8.70	8.85	
L	0.45	0.60	0.75	
L1		1.00 REF	2	
S	0.20	-	-	
b	0.17	0.22	0.27	
с	0.09	-	0.20	
е		0.50 BSC		
θ	0°	3.5°	7°	

11.2 FBGA256 Package

Package information is presented in Table 61Table 59 and package dimensions in Table 62 and Figure 43.

Table 61. FBGA256 Package Information

Solder ball composition	Sn:3Ag:0.5Cu (Typ.)
JEDEC outline reference	MO-192 variation: DAF-1
Lead coplanarity	0.20 mm
Weight	0.93 g (Тур.)


 $XRS7000 \ and \ XRS3000 \ User \ Manual, \ Version \ 1.3$

b

е

Figure 43. FBGA256 Package Dimensions

Symbol	Min	Nom	Max	
А	1.35	1.45	1.55	
A1	0.30	0.40	0.50	
A2	0.85	1.05	1.25	
A3	0.65	0.70	0.75	
D		17.00 BSC		
E	17.00 BSC			

Table 62. FBGA256 Package Dimensions in Millimeters

0.50

1.00 BSC

XRS7000 and XRS3000 User Manual, Version 1.3

0.40

133

0.60

12. ORDERING INFORMATION

12.1 Part Ordering Numbers

Ordering numbers for parts are presented in Table 63. All parts are lead-free.

Device	Package	Part Ordering Number
XRS7003E	EQFP144	ARWSC-XRS7003E
XRS7004E	EQFP144	ARWSC-XRS7004E
XRS3003F	FBGA256	ARWSC-XRS3003F
XRS7003F	FBGA256	ARWSC-XRS7003F
XRS7004F	FBGA256	ARWSC-XRS7004F

Table 63. Part Ordering Numbers

12.2 Sales Offices

Arrow has more than 460 locations worldwide. An up to date list of Arrow sales offices and contact information is available at Arrow web page:

http://arrow.com/office_locations/

Arrow International telephone number (Europe, South America, Africa, Asia and Oceania): +800-8000-1010

Arrow telephone number (Canada, United States): 1-855-326-4757

 Sales Hotlines:

 China:
 (86) 400-886-1880

 Hong Kong:
 (852) 2484-2112

 Korea:
 (82) 2 2650 9700

