

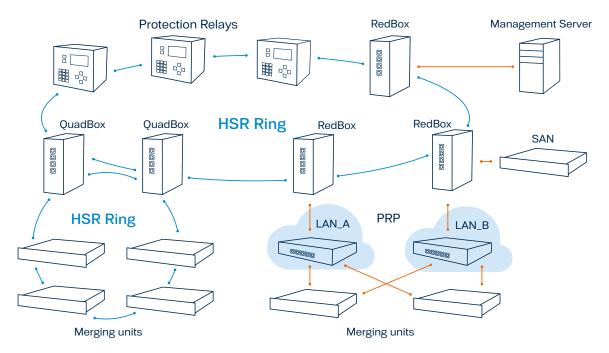
Flexibilis Redundant Switch

3 to 8 Port Ethernet IP with HSR/PRP

- Open, interoperable solution supporting HSR, PRP and IEEE 1588 PTP standards
- Scalable IP core suitable for use in both low- and high-end devices
- Fast and easy integration for planned and existing FPGA-based devices

Flexibilis Redundant Switch (FRS) is an IP core providing HSR/PRP functionality. Thanks to its scalability, the same IP core can be used in both low- and high-end FPGA-based devices. FRS has been validated using methods such as hardware accelerated simulation to guarantee the quality of the IP. FRS is also proven in use for applications in energy management (smart grid), industrial automation and transportation.

High-availability Seamless Redundancy (HSR)


HSR is a standard (IEC 62439-3 Clause 5) that provides redundant Ethernet. It is suitable for applications that require short reaction times and high availability. HSR can be used to build very robust networks with zero reaction time in case of a single failure, and predictable latency, at lower cost than other Ethernet redundancy solutions.

Many critical applications require a network with zero downtime. HSR allows a network to remain fully operational even during maintenance, as any device can be disconnected and replaced without breaking the network connectivity.

Parallel Redundancy Protocol (PRP)

PRP is an IEC standard (IEC 62439-3 Clause 4) that provides redundant Ethernet. Under PRP, each node is connected to two separated, parallel Local Area Networks (LANs). Source nodes send two copies of each packet, one over each network. When a destination node receives a packet, it accepts the first copy and discards the second copy, eliminating the duplicate.

Station bus

Process bus

Product Features

Ports	3 to 8 ports; 10/100/1000 Mbit/s
Physical Interfaces	MII, GMII
	RGMII, SGMII, RMII, 100BASE-FX, 1000BASE-X
	Avalon slave interface for management register access
ISR	HSR RedBox, HSR End Node, HSR-PRP RedBox and QuadBox support
PRP	PRP RedBox and DANP support
IEEE 802.1Q	Port-based VLANs and VLAN tagging
	Prioritization of packets on egress ports
	Untagging of VLAN frames on egress ports
Clock Synchronization	IEEE 1588-2008 layer 2 one-step end-to-end and
	peer-to-peer transparent clock support
Switching Engine	Cut-through and store and forward operation
	4096 VLANs
	16 MAC address filters per port
	4096 entries for MAC address learning
	Up to 4096 policer per port (optional)
	8 traffic shapers per port (optional)
	Up to 16k static configuration of MAC addresses (optional extra)
Statistics	Detailed packet statistics counter